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Abstract—Federated Learning (FL) in mobile environments
faces significant communication bottlenecks. Gradient compres-
sion has proven as an effective solution to this issue, offering
substantial benefits in environments with limited bandwidth and
metered data. Yet, it encounters severe performance drops in non-
IID environments due to a one-size-fits-all compression approach,
which does not account for the varying data volumes across
workers. Assigning varying compression ratios to workers with
distinct data distributions and volumes is therefore a promising
solution. This work derives the convergence rate of distributed
SGD with non-uniform compression, which reveals the intricate
relationship between model convergence and the compression
ratios applied to individual workers. Accordingly, we frame
the relative compression ratio assignment as an n-variable
chi-squared nonlinear optimization problem, constrained by a
limited communication budget. We propose DAGC-R, which
assigns conservative compression to workers handling larger data
volumes. Recognizing the computational limitations of mobile
devices, we propose the DAGC-A, which is computationally less
demanding and enhances the robustness of compression in non-
IID scenarios. Our experiments confirm that the DAGC-R and
DAGC-A can speed up the training speed by up to 25.43% and
16.65% compared to the uniform compression respectively, when
dealing with highly imbalanced data volume distribution and
restricted communication.

Index Terms—Federated Learning, Non-IID, Data-Aware Gra-
dient Compression

I. INTRODUCTION

W ITH the widespread use of mobile devices and the
progress in machine learning [1], there is a burgeoning

interest in distributed machine learning (DML) using these
portable platforms. FL is an increasingly important DML
framework that addresses the critical need for data privacy
in model training across multiple mobile devices. Despite
its potential, this paradigm faces significant challenges due
to communication bottlenecks, particularly as the number of
devices scales up. Gradient compression has been identified
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as an effective solution to this challenge, by reducing the
communication volume and offering a cost-effective option in
bandwidth-limited and per-traffic billing mobile environments.

However, in non-IID scenarios, the performance of lossy
gradient compression algorithms worsens, leading to poorer
model convergence when contrasted with IID datasets [2], [3].
For instance, the same gradient compression algorithm [4]
(with the hyperparameter set to 10%) reduces the accuracy
by only 0.7% compared to the bulk synchronous parallel
(BSP) [5] as a baseline in IID scenarios. However, this gap
widens significantly to a 10.4% decrease in accuracy under
non-IID conditions [3]. The reason for the drop in accuracy
is that it uses the same aggressive gradient compression ratios
for different workers, ignoring the fact that different workers
usually have different data volumes and distributions [6]–[8].
In real-world non-IID scenarios, mobile devices are geograph-
ically distributed, and each worker collects its own dataset,
resulting in skewed data distributions and volumes [3], [9]. To
illustrate, within the Flickr-mammal dataset (denoted as Flickr
in the following) [3], the worker with the largest data volume
has 78% more samples than the worker with the second
largest data volume (divided by subcontinent). Similarly, in
the Google Landmark dataset v2 [10], the difference is even
greater. The worker with the most data has at least 213% more
images than its peers, with the division based on continent.

To facilitate our discussion, we introduce the terms large
workers and small workers to refer to workers with large and
small amounts of data, respectively. We use worker size to
denote the quantity of local data samples. Current gradient
compression algorithms often neglect the variation in worker
size. Even in studies like SkewScout [3], which suggests
adaptive methods to adjust gradient compression ratios based
on data distribution differences, large workers are subjected
to the same stringent compression strategy as their smaller
counterparts. This leads to the loss of vital information that
could otherwise help the model converge faster.

Our empirical analysis reveals important findings for de-
veloping a data-volume-aware gradient compression method.
Primarily, we find that a one-size-fits-all compression strategy
falls short in non-IID settings with communication constraints,
as workers with diverse data volumes and distributions require
tailored compression ratios. Furthermore, a compression strat-
egy that assigns higher compression ratios1 to large workers
can reduce the number of training iterations needed to achieve

1In this work, the compression ratio is defined as the ratio of the compressed
data divided by the uncompressed data, referring to the gradient compression
part of Sec. II in [11].
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the same accuracy, in contrast to a uniform strategy. Leverag-
ing these findings, we advocate for an adaptive algorithm that
adjusts compression ratios based on the worker size, thereby
optimizing the balance between compression efficiency and
communication overhead.

The relative compressor is one of the most popular types
of gradient sparse compressors, known for achieving efficient
compression compared to other compressors like quantization
[12] or low-rank [13]. In relative compressors, we can directly
determine the compression ratio, and the compressor will
transmit the corresponding number of elements. The main
technical challenge in designing the adaptive relative com-
pressor is: given a fixed total communication budget, how
to determine the compression ratio for each worker? This
budget constraint implies that, during each iteration, the total
traffic sent from all clients to the server must not exceed
a fixed limitation2. To tackle this issue, firstly we derive
the convergence rate of distributed SGD with error feedback
and different gradient compression ratios (denoted as non-
uniform D-EF-SGD) with the relative compressors like Top-k
[14], [16]. Our results demonstrate that in communication-
constrained non-IID scenarios, there is a key term that directly
affects the convergence rate of non-uniform D-EF-SGD with
the relative compressors. Minimizing this term not only speeds
up its convergence rate but also makes the algorithm robust
to non-IID scenarios. To find a proper assignment of relative
compression ratios, we formulate an n-variable chi-square
nonlinear optimization problem with one constraint, which can
be solved by the Lagrange multiplier method and finding the
minimum of a one-dimensional function.

While the process of deriving the optimal compression
ratios introduces negligible additional computational cost, the
relative compressor has high computational overhead, making
it less suitable for resource-constrained mobile environments.
In contrast, the absolute compressor [17], which transmits
elements with absolute values higher than a fixed threshold,
does not allow for precise control over the compression ratio,
and it is more efficient than the SOTA relative compressor
Top-k. The compression cost of Top-k can be up to hundreds
of times greater than that of the absolute compressor3 for
two main reasons: (1) the absolute compressor has a lower
computational complexity of O(d) compared to the O(d log k)
complexity of Top-k selection, where d is the number of the
model parameters; (2) Top-k selection performs poorly on
accelerators such as GPUs. Therefore, we solve the technical
challenge under the absolute compressor similarly. We derive
the convergence rate under the absolute compressor and re-
veal the key factor in the rate. We then formulate the task
identifying the optimal threshold as a symmetric optimization

2We focus solely on compressing the communication from clients to the
server, also known as upstream communication. This is because communica-
tion bottlenecks in the PS architecture typically occur in the upstream direction
[14], [15]. The downstream communication optimization is beyond the scope
of this work.

3According to Fig. 15(d) in the appendix of the work [18], the compression
time of Top-k is hundreds of times that of SIDCo, and the absolute compressor
is more effective than SIDCo.

problem, solvable using the Lagrange multiplier method. By
minimizing the key factor, we can obtain a faster convergence
rate without introducing additional hyperparameters.

Based on these analyses, we propose DAGC (illustrated in
Fig. 1), a low-cost data-aware adaptive gradient compression
algorithm that strategically allocates different compression
ratios depending on the worker size. DAGC is designed for
the realistic non-IID scenario, where the local datasets in
the mobile devices are collected based on the location and
there is a significant difference in the worker size. DAGC is
composed of DAGC-R for relative compressors and DAGC-A
for absolute compressors. We define the number of workers
as n, the compression ratio of the relative compressor, the
threshold of the absolute compressor, and the training weight
of the i-th worker as δi, λi and pi respectively. We have
δi
δj

≈ ( pi

pj
)2/3 in DAGC-R and λi

λj
= (

pj

pi
)2/3 in DAGC-

A. Both align with the conclusion from the measurements,
indicating that higher compression ratios should be given to
workers with larger pi. The time complexity of DAGC-R (as
well as DAGC-A) to find the optimal δi (λi) is O(n) (O(1)).

In a word, the contributions of our work are summarized as
below:

• We experimentally reveal that setting higher compression
ratios for large workers converges faster than the uniform
compression under the fixed and limited communication
volume.

• We generalize the convergence analysis of D-EF-SGD
with both relative [19] and absolute compressors [17] to
the context of non-uniform compression, where nodes are
endowed with different compression ratios and training
weights. Under communication-constrained non-IID sce-

narios, we show the key factor
∑n

i=1
pi√
δi√

δmin
for the relative

compressor and
∑n

i=1 p
2
iλ

2
i for the absolute compressor.

• We propose two novel adaptive compression algorithms,
DAGC-R and DAGC-A, designed for optimizing com-
pression rate allocation in relative and absolute compres-
sors, respectively. DAGC-R is developed by solving an
n-variable chi-square nonlinear asymmetric optimization
problem with a communication constraint. In DAGC-R,
it has δi

δj
≈ ( pi

pj
)2/3. Similarly, DAGC-A is developed by

solving an n-variable chi-square nonlinear symmetrical
optimization problem subject to the same constraint and
has λi

λj
= (

pj

pi
)2/3. DAGC-R and DAGC-A converge the

fastest in communication-constrained non-IID scenarios.
• We employ DAGC-R and DAGC-A in both the real-world

non-IID and artificially partitioned non-IID datasets. The
experimental results confirm the correctness of our theory
and show that our design can save up to 25.43% of
iterations to converge to the same accuracy compared to
the uniform compression.

II. PRELIMINARIES

We specifically concentrate on FL using the D-EF-SGD
algorithms alongside sparsification compressors. We aim to
overcome the challenges posed by non-IID scenarios with
constraint communication in FL. To provide a comprehensive
understanding, we will briefly delve into the optimization
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Fig. 1: High-level design of DAGC. DAGC sets different
compression ratios to workers depending on the worker size.
Large workers (i.e., the workers with large data volumes
and similarly to small and medium workers) are assigned
conservative compression ratios, and small workers adopt
aggressive compression ratios.

problem of FL, communication-constraint non-IID scenarios,
and gradient compression, including the properties of relative
and absolute compressors.
The optimization problem of FL: The distribution problem
is taken into consideration in this project.

f∗ := min
x

[
f(x) :=

n∑
i=1

pifi(x)

]
,

In this research, we consider the objective function f , which
is divided into n terms fi, i ∈ [n]. pi is the training weight of
the worker i. Each pi value should be greater than or equal to
0, and the summation of all pi values equals 1. To facilitate
explanation, we assign sequence numbers to the workers based
on their training weights4, with pi ≥ pi+1,∀i ∈ [n− 1].
Communication-constraint non-IID scenarios: In
communication-constrained non-IID scenarios, on the
data side, data on each node is isolated from others due
to privacy and data security. This results in different
data volumes and the classification of datasets stored
by distributed workers. On the communication side, the
bandwidth between mobile devices and the server is limited,
often requiring communication across WAN, which incurs
high costs. Therefore, achieving efficient training under these
constraints can not only speed up the training process but
also significantly reduce the expensive WAN communication
costs. In this work, communication-constrained cases mean
that the average compression ratio is less than or equal to
0.1%, and having the same communication budget means that
the sum of the communication volume transmitted from all
workers to the server per iteration is the same across different
compression strategies.
Gradient compression: Unlike compressing the model [20],
[21] for inference speedup, gradient compression focuses

4The order of the training weight remains the same in the following paper.

on compressing the gradient to reduce the traffic volume
during the communication phase. Concerning compression
tactics [22], compression approach can be categorized into (i)
quantization [23]–[25], which converts high precision to low
precision, consequently diminishing the number of transmitted
bits; (ii) sparsification [17], [26], which retains solely certain
elements of the gradient while assigning 0 to others; (iii) low-
rank [13], which breaks down the gradient matrix to acquire
multiple low-rank matrices.

According to whether the compression error (i.e., the norm
of the difference between the parameter before and after
compression) is independent of the compressed parameter x,
the compressors can be categorized as absolute or relative
compressors [17]:
• The relative compressor: A relative compressor is one whose
compression error is dependent on the compressed parameter.
Classic relative compressors include Top-k and Random-k
[11], [22]. The input parameter of a relative compressor is the
compression ratio δ. The larger δ is, the more conservative the
compression is. We represent the relative compressor as Cδ .
By definition, Cδ is a mapping that has the property Rd → Rd:

ECδ
∥Cδ(x)− x∥2 ≤ (1− δ)∥x∥2.

• The absolute compressor: The compressor error of the
absolute compressor is independent of x. The representative
compressor is the hard-threshold algorithm [17]. The input
parameter of the absolute compressor is the threshold λ. The
higher λ indicates more aggressive compression. We denote
the absolute compressor as Cλ and definitionally, Cλ is a
mapping: Rd → Rd, having the property:

ECλ
∥Cλ(x)− x∥2 ≤ dλ2,

where d is the number of parameters of the model.
Distributed SGD with error-feedback and sparsification
compressors (D-EF-SGD): D-EF-SGD [27] and Distributed
Quantized SGD (D-QSGD) [15], [28] are two of the most
dominant compressors in FL. In communication-constrained
non-IID scenarios, D-EF-SGD has two advantages: First, it
achieves lower compression ratios5 (i.e., transmits less infor-
mation), which is favorable for resource-constrained scenarios;
Second, D-EF-SGD has a lower dependence on the hetero-
geneity of the data, and thus is more suitable for highly skewed
non-IID scenarios [30]. For these reasons, we focus on D-EF-
SGD rather than D-QSGD.

III. MOTIVATING EXAMPLES

In this section, we aim to validate the following two
points through a series of motivating experiments: 1)
In communication-constrained environments, a compression
strategy with different compression ratios can achieve faster
convergence compared to uniform compression. 2) A strategy
that sets higher compression ratios for large workers usually
achieves faster convergence than those for small workers,

5 1
32

is the tiniest compression ratio of D-QSGD [12], [29], nearly 3.4%,
while less than 0.1% denotes the compression ratio of sparsification constrain
[19]. Meanwhile, the compression ratio of D-QSGD is discrete. It emphasizes
to adaptively adjust more complicated ratios. This issue is also discussed in
the design of DC2 [11].
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Fig. 2: The accuracy curves (Accuracy vs. Iterations) of
Logistic@FMNIST (a) and LSTM@SCs (b) using different
relative compression strategies. In scheme I (as well as scheme
II), large workers are set lower (higher) compression ratios.
The uniform compression is a one-size-fits-all strategy. Among
these three strategies, non-uniform compression scheme I
exhibits optimal performance.

reducing the number of iterations by up to 69.70%. To verify
this conclusion, two non-uniform compression strategies are
used in this paper: 1) Non-uniform compression I give higher
compression ratios to large workers and lower compression
ratios to small workers; 2) Non-uniform compression II gives
lower compression ratios to large workers and higher com-
pression ratios to small workers.

To provide empirical evidence for our research, we per-
formed two tasks: Fashion-MNIST [31] (denoted as FMNIST)
using Logistic and Speech Commands [32] (denoted as SCs)
using LSTM. This ensures that our experimental findings are
generalizable. To gain a better understanding of the results,
we divide the workers into two categories: large workers and
small workers. Our setup consists of 11 workers, with one
large worker with datasets accounting for plarge of the global
dataset, and 10 small workers, each with datasets accounting
for psmall =

1−plarge

10 , plarge = 50%. In these experiments,
we impose communication constraints, specifically an average
compression ratio of the aggressive ratio δmin = 0.1% as
described in the appendix experiments [17], while maintaining
consistent total communication volume (i.e., fixing

∑n
i=1 δi).

To simulate the non-IID scenario, the data points are generated
based on the Dirichlet distribution, with the parameter set to
0.5.
Logistic on FMNIST: It can be observed from Fig. 2a
that the initial stages witness faster progress in non-uniform
compression I (δ1 = 1%, and δi = 0.01%, i ∈ [2, n]) when
compared to two alternative strategies. In order to achieve
accuracies of 50%, 60%, 70%, and 80%, the iteration reduction
for scheme I are 54.55%, 41.67%, 62.96%, and 62.50%, re-
spectively, compared to the uniform compression (δi = 0.1%,
i ∈ [1, n]). It is noteworthy that under such circumstances, the
performance of scheme I is optimized, whereas non-uniform
compression II (δ1 = 0.01%, and δi = 0.11%, i ∈ [2, n])
experiences a relatively weaker performance.
LSTM on SCs: Fig. 2b demonstrates that, in the context of
fixed communication volume, the model utilizing the non-
uniform compression strategy I exhibits the fastest conver-
gence. To attain accuracy levels of 50%, 55%, 60%, and 65%,

TABLE I: Notation list.

Notation Description
n the number of workers
pi the training weight of the i-th node

δi/λi

the compression ratio/threshold
of node i under the

relative/absolute compressor

Cδi/Cλi

the relative/absolute compressor
and the hyper-parameter is δi/λi

xt the global model in the t-th iteration
γ learning rate

gi(xt) the stochastic gradient of xt

eit
the local error term of node i

in the t-th iteration

∆̂i
t

the compressed gradients
transferred to the server from

node i in the t-th iteration

∆̂i
t

the compressed gradients
transferred to the server from

node i in the t-th iteration

ζi

the distance of node i
from the local distribution
to the global distribution

σ2 the upper variance bound
of the noise of gradients

the non-uniform compression strategy I diminishes the training
time by 7.95%, 19.17%, 19.75%, and 27.06%, respectively,
as compared to the uniform strategy with plarge = 50%. The
convergence rate of scheme II is significantly worse than the
other two strategies.

In conclusion, the aforementioned empirical findings af-
firm the inadequacy of uniform compression as an optimal
strategy when confronted with discrepancies in worker size.
Conversely, the proposed approach, which assigns higher
compression ratios to large workers, stands as an efficacious
means of enhancing training speed.

IV. THEORETICAL ANALYSIS WITHIN THE RELATIVE
COMPRESSOR

In this section, our primary focus is to address the central
issue of this research: Given the total amount of com-
munication, how can we theoretically ascertain the best
compression ratio for each worker using the relative
compressor?

Initially, we outline the convergence speed of non-uniform
D-EF-SGD with the relative compressor, taking into account
the non-convex, convex, and strongly convex scenarios. (The-
orems in Sec. IV-B and the proof in Appendix)

Subsequently, we represent this challenge as an n-variable
chi-square nonlinear asymmetrical optimization problem that
comes with one constraint. (Theorem 4 in Sec. IV-D)

Lastly, we propose our design DAGC-R in Sec. IV-E.
We tabulate the notations in Table I. Additionally, we

showcase the pseudo-code of non-uniform D-EF-SGD in Al-
gorithm 1.
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Algorithm 1: Non-uniform D-EF-SGD
Input: n, γ, pi, compressor C, compression

parameters δ1, . . . , δn or λ1, . . . , λn, initial
parameters x0, initial local error ei0 = 0d

Output: xT
1 for t = 0, . . . , T − 1 do

/* Worker does */
2 for i = 1, . . . , n do
3 Receive xt from the server;
4 gi

t := gi(xt);
5 if C is the relative compressor then
6 ∆̂i

t := Cδi(eit + git);
7 else
8 ∆̂i

t := Cλi
(eit + git);

9 end
10 eit+1 := eit + git − ∆̂i

t;
11 Upload ∆̂i

t;
12 end

/* Server does */
13 Gather all ∆̂i

t;
14 xt+1 := xt − γ

∑n
i=1 pi∆̂

i
t;

15 Send xt+1 to all workers
16 end
17 Return xT ;

A. Assumptions

We assume functions are L-smooth with the gradient noise
of SGD presumed to exhibit zero mean and a variance of
σ2. We gauge data heterogeneity using constants ζ2i > 0 and
Z2 ≥ 1, which cap the variance among the n workers. In
Theorem 2, 3, we posit that objective functions are µ-strongly
convex. Detailed assumptions are shown below.
Assumption 1 (L-smoothness). We assume L-smoothness of
fi, i ∈ [n], that is, for all x, y ∈ Rd:

∥∇f(y)−∇f(x)∥ ≤ L∥y − x∥. (1)

Assumption 2 (µ-strongly convexity). We assume µ-strong
convexity of fi, i ∈ [n], that is, for all x, y ∈ Rd:

f(x)− (y) ≥ ⟨∇f(y), x − y⟩+ µ

2
∥∇f(y)−∇f(x)∥2. (2)

Assumption 3 (Bounded gradient noise). We assume that we
have access to stochastic gradient oracles gi(x) : Rd → Rd for
each fi, i ∈ [n]. For simplicity we only consider the instructive
case of uniformly bounded noise for all x ∈ Rd, i ∈ [n]:

gi(x) = ∇fi(x) + ξi, Eξiξi = 0d, Eξi∥ξi∥2 ≤ σ2. (3)

Assumption 4 (Measurement of data heterogeneity). We mea-
sure data dissimilarity by constants ζ2i ≥ 0, Z2 ≥ 1 that bound
the variance across the n nodes. We have:

∥∇fi(x)∥2 ≤ ζ2i + Z2∥∇f(x)∥2, ∀x ∈ Rd, i ∈ [n].

This is similar to the assumption in previous work [30],
[33].

B. Convergence rate of non-uniform D-EF-SGD with the
relative compressor

Theorem 1 (Non-convex convergence rate of non-uniform
D-EF-SGD with the relative compressor). Consider a function
f , which maps from Rd to R, and is L-consistent. We can
find a learning rate γ such that γ ≤ 1

4LZ
δmin√
nCZ

, where
CZ =

∑n
i=1

δmin

δi
p2i . This means that the number of

O(
σ2
∑n

i=1 p
2
i

ϵ2
+

√
n(ζ

∑n
i=1

pi√
δi

+ σ
√∑n

i=1 p
2
i )

ϵ3/2
√
δmin

+

√
nZ
∑n

i=1
pi√
δi

ϵ
√
δmin

) · LF0

(4)
iterations of non-uniform D-EF-SGD with the relative com-
pressor ensures Ef(xfinal) − f∗ ≤ ϵ, where F0 is at least
f(x0) − f∗, and xfinal = xt refers to a version xt from the
set {x0, . . . , xT−1}, picked randomly.

Theorem 2 (Convex convergence rate of non-uniform D-E-
F-SGD with the relative compressor, i.e., µ = 0). Consider a
function f , which maps from Rd to R, and is L-consistent
and µ-convex. We can find a learning rate γ such that
γ ≤ 1

14LZ
δmin√
nCZ

, where CZ =
∑n

i=1
δmin

δi
p2i . This means that

the number of

O(
σ2
∑n

i=1 p
2
i

ϵ2
+

√
nL(ζ

∑n
i=1

pi√
δi

+ σ
√∑n

i=1 p
2
i )

ϵ3/2
√
δmin

+

√
nLZ

∑n
i=1

pi√
δi

ϵ
√
δmin

) ·R2
0

(5)

iterations of non-uniform D-EF-SGD with the relative com-
pressor ensures Ef(xfinal) − f∗ ≤ ϵ, where R2

0 is at least
∥x0 − x∗∥, and xfinal = xt refers to a version xt from the set
{x0, . . . , xT−1}, picked randomly.

Theorem 3 (Strong convex convergence rate of non-uniform
D-EF-SGD with the relative compressor, i.e., µ > 0). Con-
sider a function f , which maps from Rd to R , and is L-
consistent and µ-convex. We can find a learning rate γ such
that γ ≤ 1

14LZ
δmin√
nCZ

, where CZ =
∑n

i=1
δmin

δi
p2i . This means

that the number of

Õ(
σ2
∑n

i=1 p
2
i

µϵ
+

√
nL(ζ

∑n
i=1

pi√
δi

+ σ
√∑n

i=1 p
2
i )

µ
√
δminϵ

+

√
nLZ

∑n
i=1

pi√
δi

µ
√
δmin

)

(6)

iterations of non-uniform D-EF-SGD with the relative com-
pressor ensures Ef(xfinal) − f∗ ≤ ϵ, and xfinal = xt refers
to a version xt from the sequence {x0, . . . , xT−1}, selected
probabilistically based on (1−min

{
µγ
2 , δmin

4

}
)−t.
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C. Analysis of the convergence rate in communication-
constrained non-IID scenarios

To facilitate, we denote the order of magnitude of a as
OM(a), i.e., OM(a) = ⌊log10 a⌋. In this way, we have the
following inequalities:

OM(ϵ) ≥ −4, (7)

OM(n) ≥ 1, (8)

OM(σ) ≤ OM(ζ) + 1, (9)

OM(δ) ≤ −3. (10)

Eq. 7 and Eq. 8 are the default experimental settings. The
Eq. 7 means that the model converges when ϵ = 10−4

according to the previous work [34]. n is typically taken from
10 to 1, 000, so we get the Eq. 8.

Eq. 9 and Eq. 10 are based on the communication-
constrained non-IID scenario discussed in this paper. The Eq. 9
means that the bias due to the non-IID datasets is larger than
the noise of the gradient, based on the accuracy degradation of
the severe non-IID problem [3], [9]. In other words, if Eq. 9
does not hold, the negative effect of the non-IID problem
is negligible, which is beyond the scope of this work. Due
to δ ≤ 0.1% in the communication-constrained case, we get
Eq. 10.

Based on the above inequalities, we have

OM(ζ

n∑
i=1

pi√
δi
)

= OM(ζ) +OM(

n∑
i=1

pi)−
1

2
OM(δ)

≥ (OM(σ)− 1) +OM(

√√√√ n∑
i=1

p2i ) +OM(
√
n) +

3

2

> OM(σ

√√√√ n∑
i=1

p2i ),

so the convergence in the Theorem 3 can be written into

Õ(
σ2
∑n

i=1 p
2
i

µϵ
+

√
nL(ζ

∑n
i=1

pi√
δi
)

µ
√
δminϵ

+

√
nLZ

∑n
i=1

pi√
δi

µ
√
δmin

).

For the sake of simplicity, we introduce a function of n

variables, Φ(δ1, . . . , δn) =

∑n
i=1

pi√
δi√

δmin
. Then the convergence

rate of Theorem 3 can be further simplified as

Õ(
σ2

ϵ
+

ζΦ√
ϵ
+Φ).

Similarly, Theorem 1, 2 can be both simplified as

O(
σ2

ϵ2
+

ζΦ

ϵ3/2
+

Φ

ϵ
).

The difference between Theorem 1 and Theorem 2 is that
there is a coefficient

√
L on the second term and L on the

third term in Theorem 2. It does not matter that they can be
represented within the same paradigm.

We dissect the convergence speed under two circumstances:
• Without gradient noise (σ = 0): non-uniform D-EF-SGD
with the relative compressor shows sub-linear convergence at
a pace of O( ζΦ√

ϵ
+Φ) (as well as O( ζΦ

ϵ3/2
+ Φ

ϵ ) in the strongly
convex cases (non-convex and convex cases). Minimizing Φ
leads to the best convergence.
• With gradient noise (σ ̸= 0): Notably, the second term ζΦ√

ϵ

cannot be ignored, due to OM( 1ϵ ) ≤ OM( 1√
ϵδ
). Φ is still a

key factor in the convergence rate. Reducing Φ can not only
speed up the convergence rate but also mitigate the negative
influence of non-IID scenarios.

Overall, minimizing Φ can (1) improve the convergence
rate of non-uniform D-EF-SGD with the relative compressor;
and (2) make the algorithm robust to non-IID scenarios, in
communication-constrained non-IID scenarios regardless of
the convexity.

D. The optimal compression ratios

Theorem 4 (Optimal δi). Under the premise that the over-
all communication traffic is fixed, i.e.,

∑n
i=1 δi = nδ̄,

the following equation emerges. We set δj = δmin =

min{δ1, . . . , δn} and denote P :=
∑n

i=1 p
2/3
i . The minimal

value of Φ(δ1, . . . , δn) can be split into two distinct situations:
• j is not equal to n

Φ(δ1, . . . , δn) ≥
1

nδ̄
(pj(1 +Qj) + pnQj(1 +Qj)), (11)

where Qj =
P−p

2/3
j

p
2/3
n

. It takes the equal sign when δj =
nδ̄

Qj+1

and δi =
nδ̄

Qj+1

p
2/3
i

p
2/3
n

, i ̸= j.
• j is equal to n

Φ(δ1, . . . , δn) ≥
1

nδ̄
(pj(1 +Qj) + pn−1Qj(1 +Qj)), (12)

where Qj =
P−p

2/3
j

p
2/3
n−1

. It takes the equal sign when δj =
nδ̄

Qj+1

and δi =
nδ̄

Qj+1

p
2/3
i

p
2/3
n−1

, i ̸= j.

Remark 1. This theorem reduces the problem of finding the
optimal δi, to get the minimal value of Φ, from a continuous
space into a discrete sub-space with only n points. Since
traversing the continuous space is impractical, this theorem
does simplify the problem, making it solvable.

Remark 2. In IID scenarios, where pi = pj and ζi = 0
for all i, j ∈ [n], it follows that Qi = n − 1 for all i ∈
[n], leading to δi = δ̄ for all i ∈ [n]. This implies that the
optimal compression strategy in IID scenarios is the uniform
compression.

E. DAGC-R and its implement in FL

The pseudo-code of DAGC under the relative compressor
(denoted as DAGC-R) is presented in Algorithm 2. DAGC-R
is structured in the following manner: 1) it uses Theorem 4
to derive n local optimal solutions from a continuous space,
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Algorithm 2: DAGC-R

Input: n, pi, average compression ratio δ̄
Output: δ1, . . . , δn
/* The value of ϕj represents the

minimal Φ(δ1, . . . , δn) when δj is the
least among all δi. */

1 Set ϕmin = +∞;
2 for j = n, n− 1, . . . , 1 do
3 if j == n then
4 Calculate ϕj using the right side of Eq. (12);
5 else
6 if pj == pj−1 then

/* When weights are repeated,
bypass this computation. */

7 ϕj = ϕmin;
8 else
9 Calculate ϕj using the right side of

Eq. (11);
10 end
11 end
12 if ϕj < ϕmin then
13 ϕmin = ϕj and adjust the optimal values for

δ1, . . . , δn;
14 end
15 end
16 Return δ1, . . . , δn;

and 2) it gets the global optimal solution by traversing n local
optimal solutions.

This procedure has negligible extra overhead compared to
conventional gradient compression algorithms. It involves only
one local computation at the server, with a time complexity of
O(n) to derive n local optima, and a single communication
step to send the optimal compression ratios to workers, both
completed before training. DAGC-R does not require external
nodes in a parameter server architecture, the server handles
the calculations, while in decentralized training, any node can
temporarily act as the server. A larger number of devices does
not induce extra cost, so DAGC has good scalability.

V. THEORETICAL ANALYSIS WITHIN THE ABSOLUTE
COMPRESSOR

In this section, we address the technical challenge encoun-
tered under the absolute compressor, i.e., Given the limited
communication budget, what is the optimal λi?

Initially, we outline the convergence speed of non-
uniform D-EF-SGD with absolute compressors (Theorems in
Sec. V-A). Then, we formulate the challenge as an n-variable
chi-square nonlinear symmetrical optimization problem with
the traffic budget. We propose DAGC-A based on Theorem 8.
The details to prove theorems are shown in the Appendix.

A. Convergence rate of non-uniform D-EF-SGD with the
absolute compressor

Theorem 5 (Non-convex convergence rate of non-uniform
D-EF-SGD with the absolute compressor). Consider a func-

tion f , which maps from Rd to R, and is L-consistent. We can
find a learning rate γ such that γ ≤ 1

4L . Then there exists a
stepsize γ ≤ 1

4L . This means that the number of

O(
σ2
∑n

i=1 p
2
i

ϵ2
+

√
nd
∑n

i=1 p
2
iλ

2
i

ϵ
3
2

+
1

ϵ
) · LF0

(13)
iterations of non-uniform D-EF-SGD with the absolute com-
pressor ensures Ef(xfinal) − f∗ ≤ ϵ, where F0 is at least
f(x0) − f∗, and xfinal = xt refers to a version xt from the
set {x0, . . . , xT−1}, picked randomly.

Theorem 6 (Convex convergence rate of non-uniform D-E-
F-SGD with the absolute compressor, i.e., µ = 0). Consider a
function f , which is mapping from Rd to R, L-consistent and
µ-convex. We can find a learning rate γ such that γ ≤ 1

4L .
This means that the number of

O(
σ2
∑n

i=1 p
2
i

ϵ2
+

√
nLd

∑n
i=1 p

2
iλ

2
i

ϵ
3
2

+
L

ϵ
) ·R2

0

(14)
iterations of non-uniform D-EF-SGD with the absolute com-
pressor ensures Ef(xfinal) − f∗ ≤ ϵ, where R2

0 is at least
∥x0 − x∗∥, and xfinal = xt refers to a version xt from the set
{x0, . . . , xT−1}, picked randomly.

Theorem 7 (Strong convex convergence rate of non-uniform
D-EF-SGD with the absolute compressor, i.e., µ > 0).
Consider a function f , which is mapping from Rd to R, L-
consistent and µ-convex. We can find a learning rate γ such
that γ ≤ 1

4L . This means that the number of

Õ(
σ2
∑n

i=1 p
2
i

µϵ
+

√
nLd

∑n
i=1 p

2
iλ

2
i

µ
√
ϵ

+
L

µ
)

(15)
iterations of non-uniform D-EF-SGD with the absolute com-
pressor ensures Ef(xfinal) − f∗ ≤ ϵ, and xfinal = xt refers
to a version xt from the sequence {x0, . . . , xT−1}, selected
probabilistically based on (1− µγ

2 )−t.

We predominantly direct our attention to Theorem 7.
Analogous to the analysis of non-uniform D-EF-SGD with
the absolute compressor, our focus is constrained to scenarios
wherein σ = 0 or during initial training phases. Under these
circumstances, the non-uniform D-EF-SGD with the absolute
compressor converges at a rate of O(

√∑n
i=1 p

2
iλ

2
i ).

B. The optimal thresholds in communication-constrained non-
IID scenarios

We demonstrate the theorem on the optimal λi, i.e., Theo-
rem 8 and DAGC-A, We use the Lagrange multiplier method
to prove this theorem and more details can be seen in Ap-
pendix.

Theorem 8 (Conversion from λ to δ and optimal λi). In
the non-IID scenario where the total communication traffic
is predetermined and constrained, we have
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Algorithm 3: DAGC-A

Input: n, pi and the average threshold λ̄
Output: thresholds λ1, . . . , λn

1 P =
∑n

i=1 p
2
3
i ;

2 for i = 1, . . . , n do
/* calculating λi according to

Theorem 8 */

3 λi =
λ̄P
n p

− 2
3

i

4 end
5 Return λ1, . . . , λn;

λ ∝ 1

δ
(16)

and the optimal λi satisfying

λi =
λ̄P

n
p
− 2

3
i ,∀i ∈ [n], (17)

where P =
∑n

i=1 p
2
3
i and λ̄ = n∑n

i=1
1
λi

.

Remark 3. In communication-constrained environments with
non-IID datasets, the relationship between λ and δ is different
from the previous work [17], which only presents a conversion
formula applied to IID scenarios6.

Remark 4. In IID scenarios, it follows that λi = λ̄ for all i
due to pi = pj . This implies that for the absolute compressor,
the optimal compression strategy in IID scenarios is also the
uniform compression.

C. DAGC-A and its implementation in FL

We demonstrate the formula for the optimal λi in Theo-
rem 8, based on which we show the pseudo-code of DAGC-A
in Algorithm 3. The difference between DAGC-A and DAGC-
R is that the time complexity of computation in DAGC-
A is only O(1), and the rest makes no difference in the
implementation. The reason for this simplicity is that we make
a one-step approximation to the computation of λi to δi,
i.e., pi

pj
= ( λi

λj
)−

3
2 . This simplification takes into account the

constrained arithmetic in edge computing. We sacrifice some
performance to reduce the time complexity of DAGC from
O(n) to O(1).

VI. EVALUATION EXPERIMENTS

The following questions are addressed by this evaluation:
• If the communication budget is limited and fixed, does
DAGC surpass uniform compression in real-world datasets?
(Fig. 3 in Sec. VI-B)
• As the size distribution becomes more imbalanced and the
compression becomes more aggressive, will DAGC exhibit
better performance? (Table III in Sec. VI-C and Table V in
Sec. VI-E)

6The formula, demonstrated in end of the appendix of the work [17], is λ ∝
1√
δ

. They derived this equation by taking ζ = 0, equal to IID environments.

We showcase the superior performance of DAGC in
both real-world non-IID and artificially partitioned non-IID
datasets, particularly when confronted with highly imbalanced
size distribution and constrained communication.

A. Experimental settings

Environment: The experiments are conducted on an Ubuntu
18.04.6 LTS server environment. The server is equipped with
an Intel Xeon Silver 4210 CPU @2.20GHz and 4 Nvidia
GeForce GTX 3090 GPUs, each with 24GB memory. Python
version 3.8.12 is utilized, along with various libraries compat-
ible with this Python version. For machine learning purposes,
PyTorch 1.11.0 with CUDA 11.3 is employed as the primary
toolkit.
Non-IID type: We run the experiments in two non-IID types:
• Artificial non-IID data partition: In order to simulate label
imbalance, we assign a portion of samples from each label
to individual workers based on the Dirichlet distribution. The
concentration parameter is set to 0.5. This partitioning strategy
is widely adopted for generating non-IID data [9], [37], [38].
• Real-world datasets: We utilize the Flickr [3] dataset
as our real-world dataset. The dataset is downloaded
from https://doi.org/10.5281/zenodo.3676081
and the images are divided based on the subcontinent they
belong to. After excluding damaged images and accounting
for network limitations that prevented the download of certain
images, we have a total of 15 workers. The data distribution
is illustrated in Fig. 3a.
Experiment tasks: The experimental settings in this study
encompass four different types, involving tasks related to
image classification and speech recognition in Tab. II. The
Convolutional Neural Network (CNN) employed consists of
four layers, as mentioned earlier [6]. VGG11 [39] consists
of 11 layers (including 8 convolutional layers and 3 fully-
connected layers), using a continuous 3x3 small convolutional
kernel. VGG11s is a simplified version of the VGG11 [40].
ResNet18 [41] is a deep convolutional neural network con-
sisting of 18 convolutional layers and residual blocks, each of
which mitigates the gradient vanishing problem by constant
mapping. The LSTM model utilized has 2 hidden layers with
a size of 128. In order to mitigate the accuracy loss caused by
non-IID, all of these models exclude the batch normalization
layer [3].

We denote A@B as the task, which uses the B datasets to
train A model. For tasks CNN@CIFAR-10, VGG11s@Flickr,
VGG11@CIFAR-100, and ResNet18@CIFAR-10, the learn-
ing rates are 0.01, 0.1, 0.01, and 0.01, respectively, and the
batch sizes are 32 for all tasks. For the Speech Recognition
task, we utilize the Speech Commands dataset [32] (referred to
as SCs). From SCs, we select the 10 categories with the highest
number of samples. Specifically, we extract 4, 000 samples
from each of these categories, with 3, 000 samples allocated
for training purposes and the remaining 1, 000 samples re-
served for testing. The batch size is 8 and the step size is 0.1
in LSTM@SCs.
Baselines: In our comparative analysis, DAGC is evalu-
ated against established uniform compression strategies. For
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TABLE II: Summary of the experiment settings used in this work.

Task Model Dataset non-IID type Quality metric Training iterations Experiment Section

Image Classification

Logistic FMNIST [31] Artificially

Top-1 Accuracy

5, 000 Sec. III, VI
CNN CIFAR-10 [35] Artificially 10, 000 Sec. VI

VGG11s Flickr [3] Real-world 10, 000 Sec. VI
VGG11 CIFAR-100 [36] Artificially 50, 000 Sec. VI

ResNet18 CIFAR-10 Artificially 10, 000 Sec. VI

Speech Recognition LSTM SCs [32] Artificially Top-1 Accuracy 10, 000 Sec. III, VI
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Fig. 3: The label distribution for Flickr (a) and training curves (Accuracy vs. Iterations) for VGG11s@Flickr under the relative
compression ((b)-(d)) and the absolute compression ((e)-(g)) on different compression levels (left to right). DAGC outperforms
other uniform compression strategies facing limited communication under the fixed budget.

DAGC-R, Top-k and ACCORDION [42] serve as the base-
lines. In the case of DAGC-A, the hard-threshold (denoted
as Ht) and ACCORDION are the selected baselines. The
compression ratio of Top-k is set to δ̄ and the threshold of
Ht is λ̄. ACCORDION is the state-of-the-art sparsified adap-
tive gradient compression algorithm, which compresses the
gradient using aggressive compression in the critical regime
and conservative compression if not. Specifically, within the
relative compressor, the aggressive (conservative) compression
ratio of ACCORDION is set to δmin (δmax). Conversely,
under the absolute compression, the aggressive compression
threshold is set to λmax.

The number of workers and the worker size: This experi-
mental setting is specifically for generating artificial non-IID
data partitions. We set the number of workers equal to 10. The
worker size does not undergo a dichotomous division (as used
in Sec. III for simplicity). Instead, pi is an arithmetic series. To
increase the randomness of the series and to better match real-
world datasets, we incorporate a Dirichlet distribution (with
a concentration parameter of 0.5) into pi, i ∈ [2, n − 1].
This results in an approximate arithmetic series that remains
descending order. This approach allows us to generate artifi-
cially non-IID datasets with different worker sizes in Federated
Learning [9], [43]. To measure the imbalance of datasets, we
define the skew ratio (abbreviated as SR) as p1/pn.

B. DAGC-R in real-world non-IID scenarios

The experimental results indicate that the performance of
DAGC-R surpasses Top-k with uniform compression and AC-
CORDION in real-world scenarios with fixed communication
volumes.

Fig. 3a displays the data distribution of Flickr [3] (sliced by
subcontinent), which has a skew ratio of 4, 997 (≈ 79958

16 ). We
find out the 10 categories with the highest number of labels in
all the images and select these 10 categories of images from
15 workers as the training dataset.

From Fig. 3b, it can be seen that at an average compression
rate δ̄ = 10%, DAGC-R converges almost as fast as Top-k
and both are slightly faster than ACCORDION.

Fig. 3c shows that DAGC-R converges faster than Top-k in
the early stages, and then gradually equalizes with Top-k later
on. DAGC-R has always been faster than ACCORDION.

The training accuracy curve in Fig. 3d shows that at
δ̄ = 0.1%, DAGC-R consistently has a superior performance
compared to Top-k and ACCORDION. DAGC-R achieves
the same accuracy (70%) with 16.65% and 13.46% fewer
iterations (from 8, 410 iterations and 8, 100 iterations to 7, 010
iterations) relative to Top-k and ACCORDION, respectively.

Overall, DAGC-R outperforms Top-k with uniform com-
pression and ACCORDION in the normal compression inter-
val with fixed communication volumes.
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TABLE III: Accuracy of different relative gradient com-
pression algorithms under different SR and average relative
compression ratios δ̄. Increasing SR indicates a greater im-
balance among the size distribution of datasets. δ̄ quantifies
the extent of communication limitations. Numbers demonstrate
that DAGC-R surpasses the performance of the uniform com-
pression on all tasks. The superiority is particularly notable in
environments where worker size distribution is highly uneven
and communication bandwidth is constrained.

Model
@Dataset SR δ̄ DAGC-R Top-k ACCORDION

CNN
@CIFAR-10

10
10% 70.02% 70.14% 69.77%
1% 69.66% 69.68% 69.60%
0.1% 68.85% 68.72% 68.77%

100
10% 68.68% 68.79% 68.59%
1% 69.25% 68.87% 68.46%
0.1% 69.29% 67.36% 67.93%

1, 000
10% 68.00% 68.12% 67.89%
1% 68.06% 67.28% 66.49%
0.1% 68.25% 67.35% 67.75%

LSTM
@SCs

10
10% 78.40% 78.53% 77.93%
1% 77.10% 76.37% 76.87%
0.1% 77.07% 76.23% 76.93%

100
10% 75.17% 75.50% 74.70%
1% 74.60% 73.53% 73.87%
0.1% 73.33% 71.53% 70.70%

1, 000
10% 73.03% 72.87% 71.43%
1% 72.67% 71.17% 72.03%
0.1% 71.80% 70.27% 71.13%

Logistic
@FMNIST

10
10% 83.44% 83.38% 83.41%
1% 83.36% 83.21% 83.32%
0.1% 83.18% 83.09% 83.15%

100
10% 83.35% 83.38% 83.41%
1% 83.26% 83.23% 83.18%
0.1% 83.13% 82.92% 83.10%

1, 000
10% 83.17% 83.17% 82.86%
1% 83.24% 83.05% 83.16%
0.1% 83.06% 82.95% 82.90%

TABLE IV: Accuracy of different relative compressors under
different numbers of workers n in CNN@CIFAR-10 under
SR=100 and δ̄ = 0.1%.

n DAGC-R Top-k ACCORDION
5 67.68% 67.02% 67.03%
10 69.29% 68.87% 68.46%
20 68.94% 68.55% 68.70%
50 69.33% 68.53% 68.60%
100 69.77% 69.26% 69.19%
200 69.82% 69.24% 69.79%

C. DAGC-R in artificially partitioned non-IID scenarios

The detailed experimental results presented in illustrate the
outperformance of DAGC-R compared to Top-k and ACCOR-
DION in the case of highly skewed datasets.
Comparison of different skew ratios: The superiority of
DAGC-R in both CNN@CIFAR-10 and LSTM@SCs tasks
becomes more obvious as the skew ratio increases. DAGC-R,
Top-k and ACCORDION perform similarly when SR = 10.
However, when SR increases to 1, 000, the accuracy of DAGC-
R is higher than Top-k and ACCORDION.
Comparison of different δ̄: DAGC-R is always the best in
both tasks regardless of the skew ratio, when δ̄ = 0.1%.
This suggests that DAGC-R is suitable for situations where
communications are extremely limited.
Comparison of different numbers of workers: In Table IV,

we compare the performance of several compression algo-
rithms under different n. Even under n = 200, DAGC-R
still shows better performance than other algorithms, which
indicates the scalability of DAGC-R.

D. DAGC-A in real-world non-IID scenarios

The experimental results show that DAGC-A outperforms
hard-threshold and ACCORDION in the real-world non-IID
dataset. The advantage over hard-threshold and ACCORDION
becomes more pronounced as compression becomes more
aggressive.

Fig. 3e and Fig. 3f illustrate that in the conservative case
of compression, DAGC-A and the hard-threshold perform
similarly but both outperform ACCORDION.

Fig. 3g shows that under very aggressive compression,
DAGC-A converges much faster than hard-threshold and
ACCORDION, especially in the first half of the training
stage exhibiting a very clear advantage. DAGC-A ultimately
saves 25.43% of iterations (from 6, 960 iterations to 5, 190
iterations) over hard-threshold to reach 70% accuracy, while
ACCORDION does not reach the same accuracy until the end
of training.

E. DAGC-A in artificially partitioned non-IID scenarios

The experimental results show that DAGC-A performs bet-
ter than Ht and ACCORDION in extremely communication-
constrained situations and datasets with high skew ratios. The
detailed experimental results are in Table V.
Comparison of different skew ratios: DAGC-A behaves
more prominently when the skew ratio is relatively large. In the
CNN@CIFAR-10 task, fixing λ̄ = 0.05, the training accuracy
of DAGC-A is 1.35%, 6.54%, and 7.72% higher than that
of Ht for the skew ratio of 10, 100, 1, 000, respectively. In
the LSTM@SCs task, DAGC-A always performs best when
SR = 1, 000, while it only performs best when SR = 10 with
average λ̄ = 0.0005.
Comparison of different λ̄: When the average lambda is
larger, which means that in more aggressive compression,
DAGC-A always achieves the highest accuracy after the
same number of iterations. Keeping the skew ratio constant,
the advantage of DAGC-A in both CNN@CIFAR-10 and
LSTM@SCs tasks becomes more obvious as λ̄ increases.
Comparison of different numbers of workers: As n in-
creases, the accuracy improvement decreases. This is because
the larger worker size increases the number of input samples
per iteration, thus shortening the training iterations. However,
DAGC-A is still superior to other compression strategies under
varying n.

F. Comparsion of real time cost

In Fig. 4, we show the training curves that illustrate accuracy
over time for DAGC-R compared to other compression strate-
gies and the baseline without compression. The experiments
were conducted in the dynamic network, with an average
bandwidth of 8.4 Mb/s [44].

Fig. 4a shows that at δ̄ = 0.1%, DAGC-R significantly re-
duces the time needed to reach 60% (as well as 70%) accuracy.
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TABLE V: Accuracy of different absolute gradient compres-
sion algorithms under different SR and average absolute com-
pression thresholds λ̄. A larger λ̄ represnets a more aggressive
compression. DAGC-A also surpasses the performance of the
uniform absolute compressors in communication-constrained
non-IID scenarios.

Model
@Dataset SR λ̄ DAGC-A Ht ACCORDION

CNN
@CIFAR-10

10
0.0005 69.79% 69.73% 69.89%
0.005 68.52% 68.06% 68.39%
0.05 63.69% 62.34% 61.80%

100
0.0005 69.12% 69.31% 68.37%
0.005 68.25% 67.59% 67.65%
0.05 63.47% 56.93% 60.33%

1, 000
0.0005 68.04% 68.12% 67.28%
0.005 67.27% 66.58% 66.87%
0.05 64.17% 56.45% 63.54%

LSTM
@SCs

10
0.0005 77.63% 78.03% 76.60%
0.005 76.60% 76.90% 76.73%
0.05 75.27% 73.97% 73.43%

100
0.0005 75.10% 74.83% 75.40%
0.005 74.13% 73.93% 72.60%
0.05 73.37% 70.90% 72.13%

1, 000
0.0005 72.13% 72.10% 71.10%
0.005 71.97% 70.57% 70.70%
0.05 70.17% 67.53% 68.70%

Logistic
@FMNIST

10
0.0005 83.31% 83.35% 83.15%
0.005 83.26% 83.19% 83.30%
0.05 82.99% 82.65% 82.97%

100
0.0005 83.29% 83.16% 83.20%
0.005 83.24% 83.20% 83.17%
0.05 83.04% 82.50% 83.04%

1, 000
0.0005 83.19% 83.19% 82.93%
0.005 83.18% 83.12% 82.82%
0.05 83.14% 82.10% 83.05%

TABLE VI: Accuracy of different absolute compression algo-
rithms with varying numbers of workers n in CNN@CIFAR-
10 under SR=100 and λ̄ = 0.05.

n DAGC-A Ht ACCORDION
5 61.68% 56.93% 59.12%
10 63.47% 56.93% 60.33%
20 64.21% 60.30% 64.09%
50 65.96% 63.52% 65.10%
100 66.76% 63.34% 66.39%
200 68.15% 65.14% 66.41%

Specifically, it saves 16.78%, 17.56% and 57.16% (12.75%,
11.12% and 56.14%) compared to Top-k, ACCORDION, and
training without compression, respectively. Similarly, Fig. 4b
reveals that, at λ̄ = 0.05, DAGC-A saves 36.19%, 50.64%
and 68.28% (as well as 29.08%, 49.48% and 71.47%) of the
time required to achieve 60% (70%) accuracy compared to Ht,
ACCORDION and training without compression.

Overall, DAGC-R demonstrates more efficient convergence,
achieving high accuracy within a shorter time frame compared
to both the baseline and other compression strategies.

G. Scalability for models and datasets

We expand the experiments to ResNet18 and VGG11 mod-
els, as well as the CIFAR-100 dataset, with the results shown
in Fig. 5. The experiments uses SR = 100, δ̄ = 0.1%
for the relative compression and λ̄ = 0.05 for the absolute
compression. In all sub-figures, DAGC outperforms the uni-
form compression, demonstrating that DAGC has excellent
scalability for different models and datasets.
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Fig. 4: The training curves (Accuracy vs. Time) for
VGG11s@Flickr under the relative compression (a) and the
absolute compression (b). DAGC outperforms other compres-
sion strategies, and the training is without compression.
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Fig. 5: The training curves (Accuracy vs. Iterations) for
ResNet18 @CIFAR-10 and VGG11@CIFAR-100 under the
relative compression (a, c) and the absolute compression (b,
d). DAGC performs better in all cases.

In Fig. 5a (as well as Fig. 5b), DAGC-R (DAGC-A) can
save up to 9.96% (52.74%) iterations compared to Top-k (Ht).
Similarly, in Fig. 5c (as well as Fig. 5d), DAGC-R (DAGC-A)
can save up to 16.67% (59.5%) iterations compared to Top-k
(Ht). It should be noted that Ht and ACCORDION using Ht
have severe accuracy degradation, showing its bad scalability
for large datasets and models.

VII. RELATED WORKS

Communication optimization in communication-constraint
non-IID scenarios aims to solve the communication bottle-
neck, while eliminating the accuracy degradation due to non-
IID datasets. The work [45] proposes the Delayed Gradient
Averaging algorithm, which enhances the DML efficiency by



12

delaying the gradient averaging step, allowing simultaneous lo-
cal computation and communication. The work [46] proposes
a completely parallelizable FL algorithm, P-FedAvg, which
extends the traditional FedAvg by allowing multiple parameter
servers to collaboratively train a model, ensuring efficient
convergence and scalability in a Parallel Federated Learning
architecture. A Resource-efficient FL system is proposed in
the work [47] to tackle issues of resource heterogeneity in FL.
There are also some works that propose to use a hierarchical
architecture for DML in mobile environments, which matches
the structure of LAN-WAN. The work [48] first proposes a
hierarchical architecture in communication-constrained non-
IID scenarios. The work [49] verifies the convergence of the
hierarchical PS architecture in such scenarios. This work [50]
proposes a training scheduling strategy for DML in the LAN-
WAN architecture. However, these methods neither mitigate
the accuracy degradation brought about by non-IID scenarios
nor are they friendly to mobile communication environments
that charge by data usage. Compared to these methods, gra-
dient compression algorithms save more communication costs
savings in a per-traffic billing mobile network environment
[51], [52].
Adaptive gradient compression provides the ability to fine-
tune compression parameters, a feature not often available
in traditional algorithms [53], [54]. This enhances their ro-
bustness, particularly in varying scenarios that involve dy-
namic network environments and data heterogeneity. DC2
[11], a control setup based on network latency for handling
compression, was proposed. This innovative system ensures
timely completion of model training, even amidst fluctuating
network conditions. This patent [55] introduces the system
design of a statistical-based gradient compression method for
a distributed training system that is based on the work [18].
The work [33] proposes a systematic examination of the trade-
off between compression and model accuracy in Federated
Learning, introducing an adaptation framework to optimize
the compression rate in each iteration for improved model
accuracy while reducing network traffic. The work proposes
a transmission strategy, called FedLC [56], which combines
model compression, forward error correction, and retransmis-
sion to improve the network utilization in FL with lossy
communication. The study introduces SkewScout [3], aiming
to enhance the robustness of algorithms particularly in non-IID
scenarios. SkewScout achieves this by dynamically modulating
the compression ratio according to the disparity in loss among
workers, which is a parameter notoriously challenging to eval-
uate. As a result, the implementation of SkewScout becomes
a complex task.
Theoretically optimizing gradient compression: Some
works [28] attempt to improve the convergence rate, i.e.,
tighter upper bounds and lower time complexity, to opti-
mize existing compression algorithms for mobile scenarios
with communication constraints and heterogeneous data. The
work [57], [58] utilizes smoothness matrices to boost existing
compressors in both theory and practice. The study takes
a comparison between D-QSGD and D-EF-SGD in non-IID
conditions, integrating bias correction [30] to enhance their
data dependency. The paper also provides a theoretical analysis

of the robustness of the hard threshold sparsification algorithm
which transmits solely the absolute gradient values exceeding a
fixed hard threshold [17]. The findings indicate that compared
to Top-k, this algorithm is more resilient when dealing with
non-IID challenges.
Data-aware methods: There have been studies that put for-
ward the idea of data-aware node selection in DML. They
introduce a technique [59] that uses data volumes as a criterion
for worker selection within Federated Learning. This stands
in contrast to the traditional gradient-based methods [60].
These experiments confirm that the data-volume-oriented node
selection approach is superior to the uniform selection tactic in
non-IID situations. This indicates that allowing large workers
to transmit more data could potentially be advantageous. Yet
there don’t seem to be any existing studies introducing data-
aware algorithms in the gradient compression domain. In
our study, we introduce a data-aware gradient compression
algorithm, accompanied by an in-depth theoretical analysis.

VIII. CONCLUSION

In the study, we introduce an innovative gradient com-
pression algorithm, drawing from a fresh perspective by
considering the unevenness in data volume sizes, which en-
hances its robustness with non-IID datasets. As an initial
step, we present empirical evidence supporting the idea that
assigning higher compression ratios to workers dealing with
larger data volumes can accelerate convergence. Following
this, we establish the convergence rate for non-uniform D-
EF-SGD when applied in conjunction with either relative
or absolute compressors. We derive the key factors, which
greatly affect the model convergence in the communication-
constrained non-IID environment. By minimizing this factor,
we propose DAGC-R, which sets δi

δj
≈ ( pi

pj
)2/3, and DAGC-

A, where ( λi

λj
)2/3 =

pj

pi
. We assess the effectiveness of DAGC

by conducting tests on both real-world datasets and artificially
partitioned non-IID datasets. The results of these evaluation
experiments showcase that DAGC has the capability to reduce
the number of iterations by as much as 25.43% on the real-
world non-IID datasets. Furthermore, on artificially separated
non-IID datasets, it enhances the accuracy by a substantial
3.14%.
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IX. APPENDIX

A. Proof of Theorem 1, 2, 3

We define a virtual sequence that aids in our derivation,
referring to [30]:

x̃0 = x0, x̃t+1 := x̃t − γ

n∑
i=1

pig
i
t.

The error term that illustrates the gap between the virtual
sequence and the actual sequence is represented as

x̃t − xt = γ
n∑

i=1

pieit.

For further discussion, let’s define Gt := E∥∇f(xt)∥2,
Et =

∑n
i=1 p

2
iE∥eit∥2, F̃t := Ef(x̃t) − f∗ and Ft :=

Ef(xt)− f∗.

Lemma 1. Considering a function f , which is L-smooth. If
the learning rate γ is less than or equal to 1

4L , the following is
true for the iterations of non-uniform D-EF-SGD with relative
compression:

F̃t+1 ≤ F̃t −
γ

4
Gt + γ2L

∑n
i=1 p

2
iσ

2

2
+ γ3nL

2

2
Et. (18)

If f is exhibits µ-convexity, the following is observed

Xt+1 ≤ (1− γµ

2
)Xt−

γ

2
Ft+γ2

n∑
i=1

p2iσ
2+3γ3nLEt. (19)

Proof. Similar to the analysis in [30], we conclude

F̃t+1 ≤ F̃t −
γ

4
Gt + γ2L

2
E∥

n∑
i=1

piξ
i
t∥2

+ γ3L
2

2
E∥x̃t − xt∥2,

Xt+1 ≤ (1− γµ

2
)Xt −

γ

2
Ft + γ2E∥

n∑
i=1

piξ
i
t∥2

+ 3γ3LE∥x̃t − xt∥2.

With the independent ξit and Assumption 3 in [30], the
following equation emerges:

Eξt∥
n∑

i=1

piξ
i
t∥2 =

n∑
i=1

p2iEξt∥ξit∥2 ≤
n∑

i=1

p2iσ
2.

Additionally, we derive:

E∥x̃t − xt∥2 = E∥
n∑

i=1

pie
i
t∥2 ≤ 7n

n∑
i=1

p2iE∥eit∥2 = nEt.

Consequently, our targeted outcomes are achieved.

Lemma 2. It holds

Et+1 ≤ (1− δmin

2
)Et +

n∑
i=1

p2iσ
2

+
2

δmin
(Cζζ

2 + CZZ
2Gt), (20)

where Cζ = CZ =
∑n

i=1
δmin

δi
p2i .

Proof. With the analysis in [30], it follows

Eξit,Cδ
∥eit+1∥2

≤ (1− δ

2
)∥eit∥2 +

2

δ
∥∇fi(xt)∥2 + (1− δ)σ2

≤ (1− δ

2
)∥eit∥2 +

2

δ
(ζ2i + Z2∥∇f(xt)∥2) + σ2.

(21)

The final inequality is based on Assumption 4 as cited in
[30]. Then we incorporate the distinct compression ratios from
various workers into Eq. 21 and aggregate the outcomes:

Et+1 ≤ (1− δmin

2
)

n∑
i=1

p2i ∥eit∥2

+
2

δmin
(

n∑
i=1

δmin

δi
p2i )(ζ

2 + Z2Gt) +

n∑
i=1

p2iσ
2,

where δmin = min{δ1, . . . , δn}, ζ = max{ζ1, . . . , ζn}.

Lemma 3 (Lyapunov function). Considering a function f ,
which is L-smooth. If the learning rate γ is less than or equal

to
δmin

4LZ
√
nCZ

. Then it holds

Ξt+1 ≤ Ξt −
γ

8
Gt + γ2L

∑n
i=1 p

2
i δ

2

2
+

γ3

(
L2n

δmin

)(
2Cζζ

2

δmin
+

n∑
i=1

p2iσ
2

)
, (22)

7The inequality follows from the fact that ∥
∑k

i=1 ai∥2 ≤ k
∑k

i=1∥ai∥2.

https://doi.org/10.1109/TPDS.2023.3240883
https://www.amazon.science/publications/learnings-from-federated-learning-in-the-real-world
https://www.amazon.science/publications/learnings-from-federated-learning-in-the-real-world
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where Ξt := F̃t + bEt, b =
γ3L2n

δmin
. Additionally, assuming

f is both L-smooth and µ-convex and γ is less or equal to
δmin

14LZ
√
nCZ

, the following holds:

Ψt+1 ≤
(
1−min

{
γµ

2
,
δ

4

})
Ψt −

1

8L
Gt + γ2

n∑
i=1

p2iσ
2

+γ3

(
12Ln

δmin

)(
2Cζζ

2

δmin
+

n∑
i=1

p2iσ
2

)
, (23)

where Ψt := Xt + aEt with a =
12γ3nL

δmin
.

Proof. For smooth functions, we incorporate Eq. 18 and 20
into the right side of the expression Ξt+1 := F̃t+1 + bEt+1.

In the case of convex functions, we introduce Eq. 19 and 20
into the right side of the expression Ψt+1 := Xt+1 + aEt+1.
This concludes the entire proof.

For the function that is non-convex, by integrating Eq. 22
with Appendix F’s Lemma 27 from [30], we successfully
validate Theorem 1. When addressing a convex function
where µ = 0, by employing Eq. 23 in conjunction with Lemma
27 from [30] found in Appendix F, we confirm Theorem 2.
For the function showcasing strong convexity characterized by
µ > 0, using Eq. 23 and referring to Lemma 25 in Appendix
F of [30], we establish the truth of Theorem 3.

B. Proof of Theorem 4

It’s essential to recognize that the primary challenge can
be converted to discerning the local optimal solution for the

function Φ(δ1, . . . , δn) =

p1√
δ1

+...+ pn√
δn√

δmin
taking into account

the constraint
∑n

i=1 δi = nδ̄ and the condition δi > 0 for
all values of i ranging from 1 to n. The demonstration of
Theorem 4 is broken down into two phases. In the initial
phase, the problem with n variables and a single constraint is
recast into an optimization problem with only one variable, as
depicted by Eq. 4. In the subsequent phase, the minimum for
this single-variable optimization issue is determined.

Lemma 4. Suppose that ai, bi > 0,∀i ∈ {1, . . . , n} with∑n
i=1 ai = A (A is a constant), bi are constants, we have

n∑
i=1

bi√
ai

≥ A− 1
2 (

n∑
i=1

b
2
3
i )

3
2 . (24)

The inequality takes equal if ai = Ab
2
3
i (
∑n

i=1 b
2
3
i )

−1.

Proof. With the equality constrain on ai, we define a
Lagrangian function as follows:

L =

n∑
i=1

bi√
ai

+ σ(

n∑
i=1

ai −A).

Based on the condition for optimality, we can deduce:{
∂L
∂σ =

∑n
i=1 ai −A = 0

∂L
∂ai

= − 1
2bia

− 3
2

i + σ = 0,∀i ∈ {1, . . . , n}
.

From the system of equations provided, we can deduce the
sought-after result.

With Lemma 4, the function Φ(δ1, . . . , δn) is transformed
into a one-dimensional function. Supposing δmin = δj ≤
min{δi}, i ∈ {1, . . . , n} \ {j}, we define bi = pi if i ∈
[1, j − 1], and for others bi = pi+1. We also set ai = δi
and A = (nδ̄ − δj).

Φ(δ1, . . . , δn) ≥
pj
δj

+
(P − p

2
3
j )

3
2√

(nδ̄ − δj)δj

, whereP =

n∑
i=1

p
2
3
i .

(25)
Eq. 25 is achieved when δi = (nδ̄−δj)p

2
3
i (P−p

2
3
j )

−1, i ̸= j.
Given that pi is sorted in descending sequence, min{δi} is δn
if j ∈ {1, . . . , n− 1}, or else min{δi} is δn−1.

Taking into account that the minimum of the right side of
Eq. 25 depends on the range of δj , we’ll evaluate the scenarios
for j ∈ [1, n− 1] and j = n separately.
• If j ∈ [1, n− 1], we have

δmin = δj =
(nδ̄ − δj)p

2
3
n

P − p
2
3
j

.

By setting Qj =
P−p

2/3
j

p
2/3
n

, j ∈ [1, n − 1] and using δj ≤
min{δi}. We deduce the range for δj ∈ (0, nδ̄

Qj+1 ]. By defining

H(δj) =
pj

δj
+

(P−p
2
3
j )

3
2√

(nδ̄−δj)δj
, we can compute the derivative of

H(δj):

H ′(δj) =− pjδ
−2
j

− 1

2
(P − p

2
3
j )

3
2 [(nδ̄ − δj)δj ]

− 3
2 (nδ̄ − 2δj) < 0.

Thus we get the minimum of H(δj) at δj = nδ̄
Qj+1 :

H(δj) ≥ H(
nδ̄

Qj + 1
) =

1

nδ̄
(pnQj(1 +Qj) + pj(1 +Qj)).

(26)
We combine Eq. 25 and 26 and complete the first case (j ̸=

n) in the proof.
• If j = n, we set Qn =

P−p2/3
n

p
2/3
n−1

and have

min{δi} = δn−1 =
nδ̄ − δn
Qn

.

We get the range of δn is (0,
nδ̄

Qn + 1
]. In this range,

H ′(δj) < 0 (the proof process is the same as j ̸= n). We
have

H(δj) ≥ H(
nδ̄

Qn + 1
)

=
1

nδ̄
(pn(1 +Qn) + pn−1Qn(1 +Qn)).

(27)

We combine Eq. 25 and 27 and complete the second case
(j = n) in the proof.
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C. Proof of Theorem 5, 6, 7
Lemma 5. Let f be L-smooth. If the stepsize γ ≤ 1

4L , then
it holds for the iterates of non-uniform D-EF-SGD with the
absolute compressor with the absolute compressor:

F̃t+1 ≤ F̃t −
γ

4
Gt + γ2L

∑n
i=1 p

2
iσ

2

2
+ γ3nL

2d

2

n∑
i=1

p2iλ
2
i .

(28)
If f is in addition µ-convex, we have

Xt+1 ≤ (1− γµ

2
)Xt −

γ

2
Ft

+ γ2
n∑

i=1

p2iσ
2 + 3γ3nLd

n∑
i=1

p2iλ
2
i .

(29)

Proof. According to the property of the absolute compressor,
we have

Et ≤ d

n∑
i=1

piλ
2
i . (30)

We combine the property and Lemma 1 and complete the
proof.

For functions that is non-convexity, by incorporating Eq.
28 with Lemma 27 from Appendix F of [30], we can validate
Theorem 5. When dealing with convex functions where µ =
0, integrating Eq. 29 with Lemma 27 from Appendix F of [30]
allows us to substantiate Theorem 6. For functions exhibiting
pronounced convexity (whereµ > 0), by merging Eq. 29 with
Lemma 25 from Appendix F of [30], we prove Theorem 7.

D. Proof of Theorem 8
Note that the condition is that the total communication

traffic is constrained. Previous work [17] demonstrated a
conversion formula from the threshold λi to the relative
compression ratio δi in IID scenarios, i,e,. λi = D√

δi
. This

formula can not apply to this work, for that we focus on
communication-constrained non-IID scenarios.

To get the optimal λi, we assume that δi
δj

= ( λi

λj
)Γ. Here,

Γ < 0 since δi is negatively correlated to γi. Then we have∑n
i=1 λ

Γ
i = nλ̄Γ according to

∑n
i=1 δi = nδ̄ in Sec. IX-B.

We use the Lagrange multiplier method and define a La-
grangian function as follows:

L =

n∑
i=1

p2iλ
2
i + σ(

n∑
i=1

λΓ
i − nλ̄Γ).

By the optimality condition, we have{
∂L
∂λi

= 2p2iλi + σΓλΓ−1
i = 0,∀i ∈ {1, . . . , n}

∂L
∂σ =

∑n
i=1 λ

Γ
i − nλ̄Γ = 0

.

According to ∂L
∂λi

= 0, we have pi

pj
= ( λi

λj
)

Γ
2 −1. We combine

this result with the property of DAGC-R, i.e., δi
δj

≈ ( pi

pj
)2/3,

resulting in Γ ≈ −1. Which means λi ∝ 1
δi

and pi

pj
≈ ( λi

λj
)−

3
2 .

For ease of calculation, we next use the equation, i.e., pi

pj
=

( λi

λj
)−

3
2 , rather than approximately equal. In this way, we have{

2p2iλi − σλ−2
i = 0,∀i ∈ {1, . . . , n}∑n

i=1 λ
−1
i − nλ̄−1 = 0

.

By solving system of equations above, the proof completes.
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