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Abstract—Gradient compression can effectively alleviate com-
munication bottlenecks in Federated Learning (FL). Contempo-
rary state-of-the-art sparse compressors, such as Top-k, exhibit
high computational complexity, up to O(d log2 k), where d is the
number of model parameters. The hard-threshold compressor,
which simply transmits elements with absolute values higher than
a fixed threshold, is thus proposed to reduce the complexity to
O(d). However, the hard-threshold compression causes accuracy
degradation in FL, where the datasets are non-IID and the
stepsize γ is decreasing for model convergence. The decaying
stepsize reduces the updates and causes the compression ratio of
the hard-threshold compression to drop rapidly to an aggressive
ratio. At or below this ratio, the model accuracy has been ob-
served to degrade severely. To address this, we propose γ-FedHT,
a stepsize-aware low-cost compressor with Error-Feedback to
guarantee convergence. Given that the traditional theoretical
framework of FL does not consider Error-Feedback, we introduce
the fundamental conversation of Error-Feedback. We prove that
γ-FedHT has the convergence rate of O( 1

T
) (T representing total

training iterations) under µ-strongly convex cases and O( 1√
T
)

under non-convex cases, same as FedAVG. Extensive experiments
demonstrate that γ-FedHT improves accuracy by up to 7.42%
over Top-k under equal communication traffic on various non-
IID image datasets.

Index Terms—Federated Learning, Adaptive Gradient Com-
pression, Convergence Analysis, Hard-Threshold Sparsification

I. INTRODUCTION

FL is an increasingly important Distributed Machine Learn-
ing (DML) framework that addresses the critical need for
data privacy in model training across multiple edge nodes
[1], [2]. FL requires a decaying stepsize1, not a fixed one,
to ensure model convergence in non-IID scenarios [4], which
are common in FL [5]. In FL, gradient compression has
been widely adopted to alleviate communication bottlenecks.
The classic process of FL training with gradient compres-
sion involves three main steps: (1) clients train the local
model for several iterations to obtain updates; (2) clients
compress the updates and send them to the central server;
(3) the server decompresses the updates, aggregates them
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1We focus on the original FedAVG [3] with a single learning rate on the

client side instead of two on both the server and client sides.

(e.g., averaging them in FedAVG [3]), and updates the global
model. Gradient compression methods can be classified into
three categories: (1) sparsification, transmitting a part of the
gradients; (2) quantization, mapping high-precision elements
into low-precision ones; and (3) low-rank, decomposing the
gradient into two low-rank matrices. Sparsification compres-
sion is often preferred due to its superior efficiency in reducing
redundant gradient information. The gradient sparsification
usually comes with Error-Feedback (EF) [6], [7], a popular
mechanism that collects and reuses the errors from the gradient
compression to mitigate the compression bias and guarantee
convergence. The two popular sparsification compressors are
the Top-k compressor [8] and the hard-threshold compressor
[9]. The Top-k compressor transmits elements with the top k
absolute values, while the hard-threshold compressor transmits
elements with absolute values larger than a threshold.

Top-k is recognized as the state-of-the-art (SOTA) spar-
sification compressor in FL2, but its counterpart, the hard-
threshold compressor, is not suitable for FL. We are the
first to demonstrate that the hard-threshold compressor shows
inferior convergence rates compared to Top-k in FL (as shown
in Fig. 1 in Sec. III-A) by the control variable method.
This is because the hard-threshold compression is sensitive
to the combination of the decaying stepsize and non-IID
cases. In particular, we examine the sensitivity of the hard-
threshold compression to such cases (as shown in Fig. 2 in
Sec. III-B) through the full factorial experimental design [13],
an approach involving systematically varying all experimental
factors and their combinations to understand their effects
comprehensively. The compression ratio of the hard-threshold
compressor drops rapidly to an extremely aggressive value
(like 0.1% for a CNN model with CIFAR-10 datasets [14]) in
the combination of the decaying stepsize and non-IID cases.
Such aggressive compression stops the model from converging
in non-IID scenarios, thereby reducing the model accuracy.

Although the hard-threshold compression degrades the ac-
curacy, the lightweight compression is extremely appealing in
FL. In fact, the computation cost of Top-k is up to hundreds

2Many well-performing hybrid gradient compressors in FL use Top-k for
sparsification [10]–[12].



of times of the hard-threshold compression3, primarily due
to two reasons: (1) Top-k selection has a time complexity
of O(d log2 k), and log2 k depends on the model scale (e.g.,
it can be up to nearly 30 for GPT2 [16]), while the hard-
threshold compression requires traversal of parameters with
the time complexity of O(d); and (2) Top-k selection does
not perform well on accelerators such as GPUs [15]. Clearly,
the ideal sparsification compressor in FL is one that has both
the low-cost computation of the hard-threshold compression
and the superior performance of Top-k. Sadly, no sparsifica-
tion compressor in FL has been developed to have a time
complexity of O(d) and the same theoretical convergence rate
as vanilla FedAVG so far.

We propose γ-FedHT (as shown in Algo. 1 in Sec. IV),
an ideal sparsification compressor in FL satisfying the above
properties. γ-FedHT is a stepsize-aware hard-threshold com-
pressor with vanilla EF, avoiding the accelerator-unfriendly
operations like Top-k selection, and inheriting the low-cost
property. To improve the performance, the threshold should
satisfy the increasing and then decreasing monotonicity with a
limit of zero. Combining two simple functions, the inverse pro-
portional function and the logarithmic function, the adaptive
threshold can satisfy the two mathematical properties without
introducing more hyperparameters. Although there have been
efforts to theoretically validate gradient compression algo-
rithms in FL [10], [17], these works have not considered EF,
which is important and necessary for sparsification compres-
sion. To derive the convergence rate of our design, we solve the
problem of how to integrate gradient compression with EF into
the theoretical framework of FL. We fuse the mathematical
description of EF into the framework and establish an iterative
equation. Based on this, we derive the convergence rates. The
convergence rates of γ-FedHT are O( 1

T ) under µ-strongly
convex functions and O( 1√

T
) under non-convex functions, the

same rate as FedAVG without compression.
Our contributions are as follows:

• We are the first to reveal that the model trained with
the hard-threshold compression converges less effectively
than the one trained with Top-k compressor by the
controlled variable method. We use a full factorial exper-
imental design to demonstrate that it is the combination
of the decaying stepsize and non-IID scenarios that con-
tributes to the failure of the hard-threshold compression
in FL.

• We propose γ-FedHT, the first sparsification compressor
in FL with a time complexity of O(d) and the same
convergence rate as vanilla FedAVG. We expand the
application of the traditional FL theoretical framework
and derive the convergence rate of FedAVG with gradient
compression and EF, based on introducing the iterative
equation of EF.

3According to Fig. 15(d) in the appendix of the previous work [15], the
compression time of Top-k is hundreds of times that of SIDCo. Furthermore,
the absolute compressor is more effective than SIDCo.

• We apply γ-FedHT to both real-world non-IID and ar-
tificially partitioned non-IID datasets, including convex
cases (e.g. Logistic) and non-convex cases (e.g. VGG,
CNN and GPT2). The experimental results validate the
great compression-accuracy trade-offs of our design. Un-
der equal traffic communication, γ-FedHT can improve
accuracy by up to 7.42% over Top-k on the CNN model
with non-IID datasets.

II. PRELIMINARIES

Our research focuses on the synchronous FedAVG algorithm
with the sparsification compressor. We aim to provide a
succinct overview of the optimization problem of FedAVG,
the differences between FL and traditional DML, gradient
compression, and Error-Feedback, with a particular emphasis
on the hard-threshold compressor.
The optimization problem of FL: the optimization problem
of FL minimizes a loss function f as follows:

min
x

[
f(x) :=

n∑
i=1

pifi(x)

]
,

where n represents the number of clients. The i-th client
possesses a mutually disjoint partition Di of the overall

training dataset D and the training weight pi =
|Di|∑n

i′=1 |Di′ |
.

The local training target fi(x) is the loss function evaluated
on Di.
FL vs. Traditional DML: FL distinguishes itself from tradi-
tional DML in the following four fundamental aspects:

• Non-IID: In FL, to safeguard data privacy, datasets cannot
be exchanged between nodes, resulting in unbalanced
data distributions and quantities across nodes [4]. This
contrasts with traditional DML, where datasets are uni-
formly partitioned across nodes, typically yielding IID
datasets.

• Decaying-γ: FL necessitates the stepsize γ that decays
to zero to guarantee model convergence [5]. Fixed-γ in
FL can cause significant deviation of the global model
from the optimal, with the L2 norm of the difference
being proportionate to γ2. However, in traditional DML,
decaying-γ is not necessary.

• Infrequent communication: FL is characterized by low
bandwidth and high latency due to the training across
WAN [18]. This necessitates infrequent communication,
where aggregation occurs after several training iterations,
not after each one. This study adheres to a fixed commu-
nication frequency E, consistent with vanilla FedAVG,
and does not explore adaptive strategies for E.

• Partial node participation: Due to device heterogeneity
and unreliability in FL, aggregation rounds typically
involve only the fastest-responding nodes, avoiding de-
lays from slower ones. In contrast, DML benefits from
homogeneous and reliable nodes, allowing consistent
participation in all aggregation rounds. This paper focuses
on the strategy of uniform random node selection [4].



Gradient compression: According to whether the mathe-
matical expectation of the gradient changes before and after
compression [8], compressors can be classified into biased and
unbiased compressors. The biased compressors with EF [19]
are widely used in FL because they can apply more aggressive
compression than unbiased compressors.
The hard-threshold compressor: The hard-threshold algo-
rithm, also known as the threshold-λ sparsification compressor,
is a variant of Top-k, with which it shares a certain conversion
relationship: a given k corresponds to a specific λ. With
the objective of minimizing the sum of compression errors
throughout the entire training, the hard-threshold achieves a
more favorable compression-accuracy trade-off than Top-k [9].
The hard-threshold compressor is also called the absolute com-
pressor due to its key property that the error term possesses
an upper bound independent of x. We denote the threshold as
λ and the absolute compressor as Cλ(·). Cλ(·) represents a
mapping: Rd → Rd, characterized by the following property:

ECλ
∥Cλ(x)− x∥2 ≤ dγ2λ2.

We focus on FedAVG with the hard-threshold compression,
which has not been investigated in FL.
Error-Feedback: The error-feedback mechanism [7] in gradi-
ent compression involves storing and accumulating compres-
sion errors over iterations, which are then added to the gradient
in subsequent steps to ensure accurate gradient updates and
mitigate the loss of information due to compression [20]–[23].
Some works propose new EF mechanisms to guarantee sharper
convergence rate, like EF21 [24] and EControl [25], by
introducing momentum terms or other compensation terms.
We focus on vanilla EF for two reasons: (1) EF is orthogonal
to sparsification compressors (e.g., EF and EF21 are orthog-
onal to sparsification); and (2) New EF mechanisms tend to
introduce hyperparameters or require additional storage space,
complicating the optimization problem (e.g., the performance
of EControl is sensitive to the hyperparameter).

III. MOTIVATION

This measurement answers the following questions:
• Does the hard-threshold compressor induce non-

convergence in FL? If so, is the degree of non-
convergence correlated with λ? (Fig. 1 in Sec. III-A)

• What are the underlying causes for the non-convergence
exhibited by the hard-threshold compressor in FL? (Fig. 2
in Sec. III-B)

Specifically, we employ two measurements to validate our
motivation thoroughly. 1) Logistic Regression [12] on Fashion-
MNIST [26] dataset (denoted as Logistic@FMNIST), which
is the most classical convex case [17]. 2) CNN on CIFAR-
10 [27] dataset (denoted as CNN@CIFAR-10), a widely-used
non-convex scenario [17]. To align with previous works [4],
[28], we set the number of clients as 10, the communication
frequency E = 5 (i.e., global communication after every 5
local iterations). We denote the stepsize at the t-th iteration
as γt and set γt = 100

t+1000 . The non-IID partition strategy for
Logistic@FMNIST (as well as CNN@CIFAR-10) is #C = 2
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Fig. 1: The global loss curves (Loss vs. Iterations) for FedAVG
with hard-threshold compression (denoted as HT, left) and
Top-k (right) on different tasks (top to bottom). λ0 is

√
2
2 (as

well as
√
2

10 ) in Logistic@FMNIST (CNN@CIFAR-10). k0 is
1% for two tasks. The loss curves in (a, c) do not converge to
the baseline, while those in (b, d) converge.

(#C = 5) quantity-based label imbalance [29], where #C =
2 (as well as #C = 5) means that each node owns data
samples of 2 (5) labels and there is no overlap between the
samples of each partition. We set vanilla FedAVG as the
baseline.

A. Poor Convergence of the Hard-Threshold Compression

In Fig. 1, the comparative analysis of Top-k and the
hard-threshold compression reveals that the hard-threshold
compression makes the global model far from the optimal
model. Specifically, the loss curves of Top-k (b, d) converge to
the baseline, while ones of hard-threshold compression (a, c)
does not converge to the baseline. This discrepancy indicates
that the hard-threshold compressor introduces the accuracy
degradation and the convergence rate of FedAVG with hard-
threshold compression cannot reach that of vanilla FedAVG,
both for the convex case and the non-convex one.

The l2-norm between the global model parameters and the
optimal model is positively correlated with λ. In Fig. 1(a) and
1(c), we observe that the larger the value of λ, the greater
the divergence between the loss of FedAVG with the hard-
threshold compressor and the baseline loss. This indicates an
increasingly wider gap between the performance of the global
model and optimal model4. Moreover, in convex scenarios, we

4This is referring to Appendix C-3 in [4]. We consider the global model
to have converged to the optimal model when its loss matches the baseline
loss. Otherwise, there is a distance between the global and optimal models.
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(d) CNN@CIFAR-10
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Fig. 2: Compression curves (Compression ratio vs. Iterations)
for HT with λ = 1 under different settings in the convex
(a-d) and non-convex (e-h) cases. Here, E = 1 and E = 5
denote frequent and infrequent communication, respectively,
while Client: 10/10 and 2/10 indicate partial and full partition
scenarios. Each subplot consistently demonstrates that in non-
IID scenarios, the decaying-γ prompts the hard-threshold
compressor to engage in increasingly aggressive compression
strategies as training progresses into the late stage.

observed a positive correlation between the distance of losses
and λ2.

B. Peeking Behind the Curtains of Poor Convergence

Referring to the part of FL vs. traditional DML detailed
in Sec. II, we identify four key differences between FL and
traditional DML. Our objective is to explore which of these
factors (or a combination of factors) leads to the failure of the
hard-threshold compression. For this purpose, we adopt a full
factorial experimental design, an approach that systematically
tests all possible combinations of the factors under consider-
ation. We conduct experiments using both the inclusion and
exclusion of these four factors, resulting in 16 experiments in
Fig. 2.

Decaying-γ in non-IID scenarios leading to overly aggres-
sive compression during the late training. As the convex and
non-convex ones come up with the same conclusion, we take
the convex case as an example in the following content. In
Fig. 2, we observe a unique phenomenon where the relative
compression ratio initially increases and then decreases during
the whole training process, occurring under the simultaneous
conditions of the decaying-γ and non-IID scenarios. In IID
settings, the model converges rapidly in the early stage, allow-
ing the hard-threshold compression to transmit a substantial
amount of parameters before convergence. Once convergence
is achieved, the algorithm automatically inhibits the trans-
mission of extraneous gradients, thereby striking an efficient
balance. However, in non-IID scenarios, the model converges
more slowly. The decaying-γ leads to smaller updates, which,
when faced with a fixed threshold, result in increasingly
aggressive compression strategies. This leads to a stagnation
in model convergence during the late training. The settings
of infrequent communication and partial node participation do

not affect the trend of the compression ratio curve, but only
alter the relative magnitude of the compression ratio.

IV. THE STEPSIZE-AWARE HARD-THRESHOLD
COMPRESSION IN FL

We aim to develop a low-cost adaptive hard-threshold com-
pressor less sensitive to decaying-γ. We denote the threshold
at the t-th iteration as λt, and the technical challenge is: How
to determine λt as a function of γt, i.e., let λ2

t = λ2
0F (γt),

how do we determine F (γt)
5? It is difficult to carve F (γt)

out of simple functions because λt needs to satisfy the
following mathematical properties: λt should initially increase
and subsequently diminish to 0. This can be described as: (1)
limt−>+∞ F (γt) = 0; (2) ∃0 < t1 ≤ t2 < T , ∀t ∈ (0, t1),
dF
dt ≥ 0 and ∀t ∈ (t2, T ), dF

dt ≤ 0. The initial increase
aligns with the recommendation of employing conservative
compression during the initial stages of training [30], and the
subsequent decrease aims to slow down the decline of the
compression ratio.

In order to reduce the construction space to get F (·), we
let t1 = t2 and start with simple functions. Since a single
class of simple functions cannot satisfy both properties, we
consider a combination of two functions. We choose the
inverse proportional function to fulfill the limit of 0. For the
increasing and then decreasing monotonicity, we can select
the quadratic function or the logarithmic function. We note
that the combination of the inverse proportional function and
the logarithmic function, i.e., F (γt) = (γα

t + γ−α
t )−1 (α is a

constant and α ≥ 1), can satisfy the mathematical properties
while introducing only one hyperparameter. Additionally, we
normalize this function with the geometric mean of γt and
determine λ2

t = λ2
0 ·

γα
t (γ0γT )

α
2

γ2α
t +(γ0γT )α

, where γ0 (as well as γT ) is
the start (end) value of γ.

Based on this, we propose γ-FedHT, with a time complexity
of O(1) for calculating λt and O(d) for compressing gradients.
Compared to the compression cost O(d), the time required to
compute λt is negligible, so the compression cost of γ-FedHT
is as low as the hard-threshold compressor. We show the
convergence analysis in Sec. V. We reveal that the convergence
rate is fastest when α = 1. In other words, there is only one
hyperparameter λ0 in the γ-FedHT.

The pseudo-code of γ-FedHT is shown in Algo. 1. Cλt
(x)

means compressing the tensor x with the absolute compressor
and the compression threshold is λt.

V. THEORETICAL ANALYSIS

A. Regularity Assumptions

We follow assumptions, which are standard and widely
accepted in the theoretical framework of DML [4], [17], [31].
Assumption 1 (L-smoothness). We assume L-smoothness of
fi, i ∈ [n], that is for all x, y ∈ Rd:

∥∇f(y)−∇f(x)∥ ≤ L∥y − x∥. (1)

5The reason for using λ2
t instead of λt is that the compression error

introduced by the hard-threshold compression is linearly related to λ2
t rather

than to λt.



Algorithm 1: γ-FedHT
Input: number of workers n, training weight pi, initial

parameters x0, stepsize γt, absolute compressor
Cλ(·), initial threshold λ0, α, communication
frequency E, initial local error ei0 = 0d

Output: xT

1 for t = 0, . . . , T − 1 do
2 if t mod E = 0 then
3 Server picks nodes St uniformly at random;
4 end

/* Worker side */
5 for i ∈ St do
6 if t mod E = 0 then
7 Download xt from the server;
8 end
9 xi

t+1 := xi
t − γtgi(xt), eit+1 := eit;

10 if t mod E = E − 1 then

11 λt+1 = λ0

√
γα
t+1(γ0γT )α/2

γ2α
t+1+(γ0γT )α

;

12 ∆̂i
t := Cλt+1

(eit + xit+1 − xi
t+1−E);

13 eit+1 := eit + xi
t+1 − xi

t+1−E − ∆̂i
t;

14 Upload ∆̂i
t;

15 end
16 end

/* Server side */
17 if t mod E = E − 1 then
18 Gather ∆̂i

t from nodes in St;
19 xt+1 := xt − n

|St|
∑

i∈St
pi∆̂

i
t;

20 Broadcast xt+1;
21 else
22 xt+1 := xt;
23 end
24 end
25 Return xT ;

Assumption 2 (Bounded gradient noise). We assume that
stochastic gradient oracles gi(x) : Rd → Rd are available
for each fi, i ∈ [n]. For simplicity, we only consider the
instructive case where the noise is uniformly bounded for all
x,∈ Rd, i ∈ [n]:

gi(x) = ∇fi(x) + ξi, Eξiξi = 0d, Eξi∥ξi∥2 ≤ σ2. (2)

Assumption 3 (Bounded gradient norm). We assume the
expected squared norm of stochastic gradients is uniformly
bounded:

Eξi∥gi(x)∥2 ≤ G2, (3)

where G stands for the upper bound of the gradient norm.
Assumption 4 (µ-strongly convexity). We assume µ-strong
convexity of fi, i ∈ [n], that is for all x, y ∈ Rd:

f(x)− (y) ≥ ⟨∇f(y), x − y⟩+ µ

2
∥∇f(y)−∇f(x)∥2. (4)

For the convex cases In convex cases (Theorem 1), we apply
Assumptions 1-4 and use Γc = f∗ −

∑n
i=1 pif

∗
i to measure

the data heterogeneity. f∗ (as well as f∗
i ) is the optimal value

of f (fi) referring to previous works [10], [17]. In non-convex
cases, we apply Assumptions 1-3 and use Γn ≤ E∥∇fi(xt)−
∇f(xt)∥2 to quantize the non-IID degree of nodes referring
to the work [32].

B. Convergence Rate of γ-FedHT

The technical challenge in proving this theorem lies in
integrating gradient compression algorithms with EF into the
theoretical framework of FL [4]. To tackle this problem, it is
crucial to establish relationship between xit+1 and xit. When
aggregation is not performed (i.e., for t mod E ̸= E−1), we
have xit+1 := xit − γtgi(xt), consistent with vanilla FedAVG.
In aggregation rounds (i.e., for t mod E = E − 1), we have:

xit+1 +
∑

i∈St+1

1

S
eit+1 =

∑
i∈St

1

S
[xi

t + eit − γtgi(xit)],

which can be derived by lines 13 and 19 in Algo. 1. By the
above conversation equation and the virtual sequence method
(also known as perturbed iterate analysis), we derive the
convergence rate of γ-FedHT.

Theorem 1 (µ-strongly convex Convergence rate of
γ-FedHT). Let f : Rd → R be L-smooth and µ-convex.
Choose κ = L

µ , b = max{12L
µ , E} − 1 and the stepsize

γt =
3

µ(b+t) . Then γ-FedHT satisfies

E[f(xT )]− f∗ ≤ κ

t+ b
{ 9
µ
[(1 +

γ0µ

2
)B

+(
1

2
+

2(γ0/γT )
α/2

µγ0
)D] +

µ(1 + b)

2
∆1}, (5)

where B =
∑n

i=1 p
2
iσ

2 +6LΓ+ 8(E − 1)2G2 + 4
SE

2G2 and
D = 4dλ2

0.

Remark 1. The convergence rate of γ-FedHT is O( 1
T ) under

the µ-strongly convex cases, same as vanilla FedAVG [4].

Remark 2. The term ( 12 +
2(γ0/γT )α/2

µγ0
)D is the bound of the

compression error, which is linearly correlated with λ2
0. When

λ0 = 0, γ-FedHT degrades to vanilla FedAVG.

Remark 3. The larger the α, the more iterations are needed
for the convergence. So we take α = 1 by default for α ≥ 1
in the µ-strongly convex cases.

Theorem 2 (Non-Convex Convergence rate of γ-FedHT). Let
f : Rd → R be L-smooth. Choose c > 0, and γt ≤

1
8LE . γt satisfies γtEL ≤ 2S

S−1 and 30nE2γ2
tL

2
∑n

i=1 p
2
i +

2Lγt

S (90E3L2γ2
t +3E) < 1. The convergence rate of γ-FedHT

satisfies

min
t∈[T ]

E∥∇f(xt)∥2 ≤ f0 − f∗

cγT−1TE
+ (LE2σ2 +

3E2LΓn

S
)∑T−1

t=0 γ2
t

cγT−1TE
+

2Ldλ2
0

γ0
(

γ0
γT−1

)
α
2

∑T−1
t=0 γ3

t

cγT−1TE
+

σ2 + 6EΓn

cγT−1TE

[
5nE2L2

∑n
i=1 p

2
i

∑T−1
t=0 γ3

t

2
+

15E3L3
∑T−1

t=0 γ4
t

S
].



Remark 4. The convergence rate of γ-FedHT is O( 1√
T
) under

non-convex cases, also same as FedAVG [32].

Remark 5. The term LD
2γ0

( γ0

γT−1
)α/2

∑T−1
t=0 γ3

t

cγT−1TE represents the
compression error and is bounded by λ2

0. When λ0 = 0, the
convergence of γ-FedHT degrades to that of FedAVG.

Remark 6. Due to γ0

γT−1
> 1, γ-FedHT converges the fastest

when α = 1. We take α = 1 by default in the non-convex
cases too.

C. Proof of Theorem 1

Let IE be the set of communication iterations. We have
IE = {iE|i = 1, 2, . . . }. Here we introduce a variable vit+1 to
represent the result of local SGD from xit+1. Then the training
of Algo. 1 can be described as

vi
t+1 = xit − γtgi(xit), (6)

xi
t+1 =

{
vi
t+1 if t+ 1 /∈ IE ,∑
i∈St

1
S
(vi

t+1 + eit)−
∑

i∈St+1

1
S

eit+1 if t+ 1 ∈ IE .
(7)

Motivated by previous works, we introduce two virtual
sequences v̄t =

∑n
i=1 piv

i
t and x̄t =

∑n
i=1 pix

i
t. We use the

notations Et = E∥ 1
S

∑
i∈St

eit+1∥2 and ∆t = E∥x̄t − x∗∥2.
According to Lemma 1-5 from the work [4], we have:

Lemma 1. Following the Assumption 1-4. If γt ≤ 1
4L , γt is

non-increasing and γt ≤ 2γt+E for all t ≥ 0, we have

E∥v̄t+1 − x∗∥2 ≤ (1− γtµ)∆t + γ2
tB, (8)

where B =
∑n

i=1 p
2
iσ

2 + 6LΓ + 8(E − 1)2G2 + 4
SE

2G2.

Before the proof, we compare Eq. 6 and Eq. 7 with the
Sec. A-3 in [4]. We can find that v̄t+1 = x̄t − γtgt no matter
t + 1 /∈ IE or t + 1 ∈ IE . Then we categorize and discuss
two cases (i.e., t+ 1 /∈ IE and t+ 1 ∈ IE) because Eq. 7 is
different from [4].
• t+ 1 /∈ IE: Due to v̄t+1 = x̄t+1 and Lemma 1, we have

∆t+1 ≤ (1− γtµ)∆t + γ2
tB. (9)

• t+ 1 ∈ IE: Due to x̄t+1 = v̄t+1 − 1
S

∑
i∈St

eit+1, we have

E∥x̄t+1 − x∗∥2 ≤ (1− γtµ

2
)∆t + (1 +

γtµ

2
)γ2

tB

+2(1 +
2

γtµ
)(Et+1 + Et). (10)

The inequality is followed by Jensen inequality and
Lemma 1.

We next focus on Et and have

Et ≤
1

S

∑
i∈St

∥eit∥2 ≤ γ2
t dλ

2
t ≤ γ2

t dλ
2
0F (γt−1), (11)

where the first inequality is due to ∥
∑k

i=1 ai∥2 ≤
k
∑k

i=1∥ai∥2. The second inequality follows the property of
the absolute compressor.

We combine Eq. 10 and Eq. 11 and have

E∥x̄t+1 − x∗∥2 ≤ (1− γtµ

2
)∆t + (1 +

γtµ

2
)γ2

tB

+(1 +
2

γtµ
)γ2

t+1dλ
2
0(F (γt) + F (γt+1))

≤ (1− γtµ

2
)∆t + (1 +

γtµ

2
)γ2

tB + [(1 +
2

γtµ
)γ2

t F (γt)

+(1 +
2

γt+1µ
)γ2

t+1F (γt+1)]D, (12)

where B =
∑n

i=1 p
2
iσ

2 +6LΓ+ 8(E − 1)2G2 + 4
SE

2G2 and
D = 2dλ2

0.
The second inequality is due to the non-increasing γt.
Since the RHS of Eq. 9 is smaller than the RHS of Eq. 12,

the RHS of Eq. 12 applies for all t ≤ 0. We have

∆t+1 ≤ (1− γtµ

2
)∆t + (1 +

γtµ

2
)γ2

tB

+

[
(1 +

2

γtµ
)γ2

t F (γt) + (1 +
2

γt+1µ
)γ2

t+1F (γt+1)

]
D.

(13)

For a decaying learning rate, γt = β
t+b for some β > 2

µ

and b > 0 such that γ0 ≤ 1
4L and γt ≤ 2γt+E . We utilize

the mathematical induction to prove ∆t ≤ v
b+t , where v =

max{ 2β2

βµ−2 [(1+
γ0µ
2 )B+( 12 +

2γα−1
0

µ(γ0γT )α/2 )4dλ
2
0], (1+ b)∆1}.

When t = 1, ∆t ≤ v
b+t clearly holds.

When t > 1, it follows that

∆t+1 ≤ (1− γtµ

2
)

v

t+ b
+ (1 +

γ0µ

2
)γ2

tB

+

[
(1 +

2

γtµ
)γ2

t F (γt) + (1 +
2

γt+1µ
)γ2

t+1F (γt+1)

]
D

≤ v

t+ b+ 1
+

[
(1 +

γ0µ

2
)γ2

tB − βµ− 2

2(t+ b)2
v

]
+

[
(1 +

2

γtµ
)γ2

t F (γt) + (1 +
2

γt+1µ
)γ2

t+1F (γt+1)

]
D︸ ︷︷ ︸

A1

.

(14)
The first inequality holds by the inductive conclusion ∆t ≤

v
b+t and γt ≤ γ0.

We next aim to bound A1. According to γ-FedHT, we have

A1 ≤ D(
γ2
t

2
+

2γα+1
t

µ(γ0γT )α/2
) +D(

γ2
t+1

2
+

2γα+1
t+1

µ
√
γ0γT

α )

≤ 2D(
γ2
t

2
+

2γ2
t γ

α−1
0

µ(γ0γT )α/2
).

(15)

The first inequality is due to the arithmetic-geometric mean
inequality (the first part) and γt > 0 (the second part). The
second inequality is due to the decaying-γ.

Combining Eq. 15 and Eq. 14, we have

∆t+1 ≤ v

t+ b+ 1
+ γ2

t {
2β2

βµ− 2
[(1 +

γ0µ

2
)B

+(
1

2
+

2γα−1
0

µ(γ0γT )α/2
)D′]− v} ≤ v

t+ b+ 1
,

which completes the proof of ∆ ≤ v
t+b and D′ = 2D = 4dλ2

0.



According to the L-smoothness of f(·),

E[f(xT )]− f∗ ≤ L

2
∆t ≤

L

2

v

t+ b
.

We let β = 3
µ , b = max{12κ,E} − 1 (κ = L

µ ) and have

v ≤ 18
µ2 [(1 +

γ0µ
2 )B + ( 12 +

2γα−1
0

µ(γ0γT )α/2 )D
′] + (1 + b)∆1.

D. Proof of Theorem 2
We let t′ = ⌊ t

E ⌋, ∆i
t′ =

∑E−1
j=0 ∇fi(xit′+j). t

′ represents
the communication iteration, and ∆i

t′ represents the gradients
accumulated between the t′-th and the t′+1-th global iterations
at node i.

We define a virtual sequence:

x̄0 = x0, x̄t′+1 := x̄t′ −
γt′

S

∑
i∈St

∆i
t′ .

The error term that represents the deviation between the
virtual sequence and the actual sequence is

x̄t′ − xt′ =
γt′

S

n∑
i=1

eit′ .

Given L-smoothness of f , we have

Ef(x̄t′+1) ≤ f(x̄t′)− < ∇f(xt′),
γt′

S

∑
i∈St

∆i
t′ >

+< ∇f(xt′)−∇f(x̄t′),
γt′

S

∑
i∈St

∆i
t′ >︸ ︷︷ ︸

A2

+
L

2
E∥γt′

S

n∑
i=1

∆i
t′∥2.

(16)
We next aim to bound A2, where

< ∇f(xt′)−∇f(x̄t′),
γt′

S

∑
i∈St

∆i
t′ >

≤ 1

2L
E∥f(xt′)−∇f(x̄t′)∥2 +

L

2
E∥γt

′

S

n∑
i=1

∆i
t′∥2

≤ L

2
Et′ +

L

2
E∥γt

′

S

n∑
i=1

∆i
t′∥2. (17)

The first inequality is followed by Jensen inequality, and
the last inequality is held by L-smooth functions.

According to the Appendix B in the work [17], Eq. 11
and 17, we can convert Eq. 16 into:

Ef(x̄t′+1) ≤ f(x̄t′)− γt′E∥∇f(xt′)∥2

[
1

2
− 15nE2γ2

t′L
2

n∑
i=1

p2i −
Lγt′

S
(90E3L2γ2

t′ + 3E)]

+(
5nE2γ3

t′L
2 ∑n

i=1 p
2
i

2
+

15E3L3γ4
t′

S
)(σ2 + 6EΓn)

+LE2γ2
t′σ

2 +
3E2Lγ2

t′Γn

S
+

LD

2γ0
(

γ0
γT−1

)α/2γ3
t′

+(
Lγ2

t′(S − 1)

S
− γt′

2E
)E∥

n∑
i=1

pi

E−1∑
j=0

∇fi(xi
t′+j)∥2

≤ f(x̄t′)− cγt′E∥∇f(xt′)∥2

+(
5nE2γ3

t′L
2 ∑n

i=1 p
2
i

2
+

15E3L3γ4
t′

S
)(σ2 + 6EΓn)

+LE2γ2
t′σ

2 +
3E2Lγ2

t′Γn

S
+

LD

2γ0
(

γ0
γT−1

)α/2γ3
t′ .
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Fig. 3: Training curves (Accuracy vs. Iterations). The ar-
tificially non-IID partition strategy is #C = 2. On all
benchmarks, γ-FedHT outperforms hard-threshold compres-
sion (HT) and Top-k.

#C=5 #C=3 #C=2

γ: exp
k: 0.1%
γ: inv
k: 0.1%
γ: exp
k: 1%  
γ: inv
k: 1%  

4.87 5.74 8.13

2.97 3.68 4.27

0.43 0.86 0.99

0.29 0.40 0.55

(a) n=10 γ-FedHT
 Logistic@FMNIST

#C=5 #C=3 #C=2

11.49 12.58 13.82

7.49 13.30 12.09

1.43 2.76 5.64

2.42 3.97 4.58

(b) n=10 γ-FedHT
 CNN@CIFAR-10

#C=5 #C=3 #C=2

10.86 12.84 12.69

9.71 11.34 13.25

1.32 3.34 4.45

0.54 3.76 5.19

(c) n=10 γ-FedHT-Q
 CNN@CIFAR-10

#C=5 #C=3 #C=2

γ: exp
k: 0.1%
γ: inv
k: 0.1%
γ: exp
k: 1%  
γ: inv
k: 1%  

2.52 5.67 7.91

1.94 9.35 10.81

0.98 1.39 0.50

0.29 2.15 2.22

(d) n=100 γ-FedHT
 Logistic@FMNIST

#C=5 #C=3 #C=2

8.66 38.80 48.31

10.32 37.35 36.08

5.07 3.42 2.43

0.44 2.47 4.65

(e) n=100 γ-FedHT
 CNN@CIFAR-10

#C=5 #C=3 #C=2

13.84 53.04 31.68

8.50 33.29 49.06

0.61 1.53 7.49

1.99 1.40 6.42

(f) n=100 γ-FedHT-Q
 CNN@CIFAR-10

Fig. 4: Heatmaps of the accuracy difference (%) for different
types of stepsizes (denoted as γ), compression ratios (k),
worker size (n) on different tasks. The accuracy difference
in (a, b, d, e) is the final accuracy of γ-FedHT minus that
of Top-k, and the difference in (c, f) is γ-FedHT-Q minus
STC. In all combinations, γ-FedHT (as well as γ-FedHT-Q)
is superior to Top-k (STC).

The last inequality follows from Lγ2
t′ (S−1)

S − γt′
2E ≤ 0 if

γt′EL ≤ S
2 and 1

2−15nE2γ2
t′L

2
∑n

i=1 p
2
i−

Lγt′
S (90E3L2γ2

t′+

3E) > c > 0 if 15nE2γ2
t′L

2
∑n

i=1 p
2
i + Lγt′

S (90E3L2γ2
t′ +

3E) < 1
2 . We complete the proof.

VI. EVALUATION EXPERIMENTS

A. Experimental Settings

Experiment tasks: We conduct experiments on the four tasks
and the detailed setting is shown in Table I.
Non-IID partition strategy: For the artificially non-IID par-
tition, we adopt 3 distinct non-IID partition strategies, namely
#C = 2, #C = 3, #C = 5. For Flickr, we divide workers
according to the subcontinent they belong to, with 15 clients
in total.
Baselines: We compare (1) γ-FedHT with Top-k, the hard-
threshold compressor with fixed-λ (denoted as HT), and
vanilla FedAVG; (2) γ-FedHT-Q (γ-FedHT followed by the
quantizer used in STC) with STC. Top-k is the SOTA sparsi-
fication gradient compressor in FL and serves as a key com-
ponent of nowadays hybrid gradient compressors [10]–[12].



TABLE I: Summary of the experiment settings used in this work.

Task Model Model parameters Dataset Non-IID type Loss convexity Batch size n Metric Iterations

CV
VGG11s [33] 865, 482 Flickr [5] Real-world Non-convex loss 8 15

Accuracy
40, 000

Logistic [28] 10, 250 FMNIST [26] Artificially Non-convex loss 50 10 & 100 20, 000
CNN [12] 235, 690 CIFAR-10 [27] Artificially Convex loss 8 10 & 100 40, 000

NLP GPT2 [16] 124, 000, 000 Wikitext2 [34] Artificially Non-convex loss 1 10 Perplexity 1, 000

TABLE II: Values of compression-related hyperparameters.

Model@Dataset Top-k k HT λ
γ-FedHT λ0

(inv γ)
γ-FedHT λ0

(exp γ)

VGG11s@Flickr 0.1% 1.70× 10−2 3.35× 10−2 6.28× 10−2

Logistic@FMNIST 1% 4.94× 10−2 8.70× 10−2 9.41× 10−2

CNN@CIFAR-10 0.1% 3.26× 10−2 6.42× 10−2 1.21× 10−1

GPT2@Wikitext2 0.1% 1.42× 10−3 2.29× 10−3 9.02× 10−3

HT is the SOTA sparsifier in traditional DML [9]. FedAVG
without compression is used as the benchmark for evaluation.
STC is the SOTA hybrid compressor in FL [12]. We take α = 1
in γ-FedHT due to Remark 3 and Remark 6.
Hyperparameters: For each communication round, we ran-
domly select half of the clients to participate. We configure
the communication frequency E = 5, the inverse-proportional
decay stepsize γt = 100

t+1000 and exponential decay stepsize
γt = 0.1× 0.999t/E for n = 10, 15. For n = 100, we reduce
γt by a multiple of 10.

B. Comparison of Model Accuracy

Our experimental results show that the training results
of γ-FedHT outperform HT and Top-k on all tasks. The
compression-related parameters are shown in Table II. We
calculate λ and λ0 referring to Appendix D of the work6 [9].

In Fig. 3, we find that γ-FedHT always converges better than
other sparsifiers. Let us take CNN@CIFAR-10 as an example.
To converge to 50%, 55%, 60% accuracy, γ-FedHT is faster
than HT by about 3.75%, 4.25%, 8.15% iterations, and the
accuracy of Top-k cannot reach 60%. Vanilla HT and Top-
k introduce severe accuracy degradation in this case, but γ-
FedHT does not.

In Fig. 4, we conduct a sensitivity analysis for both Logis-
tic@FMNIST and CNN@CIFAR-10 on five factors. Below is
a detailed discussion of these factors.
Compression ratio and non-IID partition strategy: The
more aggressive the compression (k from 1% to 0.1%) and
the more severe the non-IID problem (from #C = 5 to
#C = 2), the larger the accuracy difference is. This shows
that γ-FedHT greatly alleviates accuracy degradation when
faced with extremely aggressive compression and severe non-
IID problems.
Worker size: The variance of the accuracy differences at
n = 100 is larger than that at n = 10. This is interesting
because it illustrates that a larger worker size can have two ef-
fects at the same time. Firstly, when confronted with accuracy

6We use λ = 1

2
√
dk

and
∫ T
0

1
λ2 dt =

∫ T
0

1
λ2
t
dt to work out λ, λ0

respectively.

TABLE III: Accuracy and communication traffic of different
gradient compression algorithms under different non-IID par-
tition strategies. The results show that γ-FedHT outperforms
other sparsifiers under both non-convex and convex cases
especially when the communication is restricted and the non-
IID problem is extremely severe.

Model
@Dataset

Non-IID
Partition
Strategy

Method Accuracy Comm.
Traffic

Comm. Traffic
Reduced to

Logistic
@FMNIST

#C = 2

Top-(kmean) 81.97% 3.44MB 2.20%
HT 81.99% 3.78MB 2.42%

γ-FedHT 82.23% 3.44MB 2.20%
FedAVG 82.34% 156.40MB 100%

#C = 3

Top-(kmean) 82.84% 3.19MB 2.04%
HT 82.82% 3.50MB 2.24%

γ-FedHT 83.05% 3.19MB 2.04%
FedAVG 83.11% 156.4MB 100%

#C = 5

Top-(kmean) 83.56% 2.56MB 1.64%
HT 83.43% 2.82MB 1.80%

γ-FedHT 83.51% 2.56MB 1.64%
FedAVG 83.57% 156.40 MB 100%

CNN
@CIFAR-10

#C = 2

Top-(kmean) 57.57% 23.74MB 0.33%
HT 61.56% 21.58MB 0.30%

γ-FedHT 64.51% 23.74MB 0.33%
FedAVG 65.75% 7192.69MB 100%

#C = 3

Top-(kmean) 64.88% 25.89MB 0.36%
HT 71.12% 30.21MB 0.42%

γ-FedHT 72.30% 25.89MB 0.36%
FedAVG 72.42% 7192.69MB 100%

#C = 5

Top-(kmean) 70.33% 20.14MB 0.28%
HT 73.35% 23.74MB 0.33%

γ-FedHT 74.58% 20.14MB 0.28%
FedAVG 75.36% 7192.69MB 100%

degradation, a larger n tends to enlarge this degradation. This
can be seen from outliers (> 30%) in (e, f), which indicate that
Top-k does not converge. In contrast, γ-FedHT is surprisingly
robust to large-scale FL training. Secondly, a larger n also
accelerates the model convergence (by training more data in
one iteration), thus reducing the accuracy differences.
Decaying type of the stepsize and whether to bring the
quantizer or not: Carrying a quantizer essentially makes
the compression more aggressive, whereas γ-FedHT is robust
to aggressive compression environments, so the difference is
further enlarged in γ-FedHT-Q in (c, f). The decaying type of
γ does not affect the excellent compression-accuracy trade-off
of γ-FedHT.

C. Comparison of Communication Traffic

Experimental results show that γ-FedHT performs better
than HT and Top-k under equal communication traffic. In this
part, we focus on two metrics, accuracy and communication
traffic. We compare γ-FedHT with HT and Top-k (under the
same total communication traffic) in Table III. We compare γ-
FedHT-Q with STC in Table IV. A detailed discussion follows.
γ-FedHT with vanilla HT: γ-FedHT achieves higher accu-
racy with less communication traffic than HT under nearly all



TABLE IV: Accuracy and communication traffic of STC and
γ-FedHT-Q under different non-IID partition strategies. The
results show that γ-FedHT-Q outperforms STC under both
non-convex and convex cases.

Model
@Dataset

Non-IID
Partition
Strategy

Method Accuracy Comm.
Traffic

Comm. Traffic
Reduced to

Logistic
@FMNIST

#C = 2
STC 81.75%

0.21MB 0.14%
γ-FedHT-Q 82.19%

#C = 3
STC 82.73%

0.20MB 0.13%
γ-FedHT-Q 82.92%

#C = 5
STC 83.36%

0.16MB 0.10%
γ-FedHT-Q 83.46%

CNN
@CIFAR-10

#C = 2
STC 58.83%

1.42MB 0.020%
γ-FedHT-Q 63.90%

#C = 3
STC 64.59%

1.56MB 0.022%
γ-FedHT-Q 71.26%

#C = 5
STC 70.19%

1.22MB 0.017%
γ-FedHT-Q 74.10%

cases. This shows that the adaptive mechanism of our design
effectively optimizes the training process of HT and avoids
the waste of communication traffic.
γ-FedHT with Top-k: In Logistic@FMNIST, γ-FedHT ex-
hibits a higher accuracy by 0.26% compared to Top-k under
#C = 2. In CNN@CIFAR-10, this accuracy difference
expands to 7.42% under #C = 3. This suggests that γ-
FedHT can achieve better communication-accuracy trade-off
than the SOTA sparsifier in FL, especially under non-convex
and communication-constrained cases.
γ-FedHT-Q with STC: Similar to Fig. 4, the performance
of γ-FedHT is not affected whether it carries a quantizer.
Even with an extremely aggressive compression strategy, γ-
FedHT does not introduce serious accuracy degradation, which
validates the conclusion that γ-FedHT converges at the same
rate as FedAVG.

VII. RELATED WORKS

FedAVG with gradient sparsification: Research in this area
has achieved impressive compression ratios as low as 1%
or less. However, many studies lack theoretical analysis,
and the computational complexity cannot achieve O(d). One
such study proposes STC [12], which manages to achieve a
compression ratio of nearly 0.1% without significant accuracy
degradation. This is accomplished by implementing the down-
stream compression and encoding on Top-k combined with
ternary quantization. Other studies with similar approaches
include FedZIP [11] and B-MUSTC [10]. The work [35]
jointly considers adaptive node selection and sparsification
compression, but does not derive the number of iterations re-
quired to converge to a specified error. The work [36] analyzes
the convergence rate of FedAVG when using the sparsification
compression, which is O( 1√

T
) (for both the convex and non-

convex scenarios), slower than vanilla FedAVG. γ-FedHT,
however, can achieve the same asymptotic convergence rate
as FedAVG and keep the low-cost feature.
Low-cost compression in FedAVG: Most works only use
the quantization compression to keep the time complexity of
O(d) or even less. They provide the convergence analysis, but
typically only achieve a compression ratio of nearly 10%. One

such work proposes [10] MUSTC, an unbiased version of B-
MUSTC which converges at the rate of O( 1

T ) under convex
scenarios. Similar works combine the quantization compres-
sion with mechanisms such as periodic aggregation [37],
downstream compression [38] and local gradient tracking [39].
The work [17] proposes an adaptation framework for robust
dynamic networks by strategically adjusting the compression
ratio, but not considers EF. The work [40] proposes Cepe-
FL, propose a two-way adaptive compressive sensing scheme
in FL and reduce the computational complexity from O(n)
to O(1), but not guarantee the model convergence. The work
[41] reduces the computational cost of Top-k by compressing
the indexes of compressed parameters and proposes FedComp,
but still has the GPU-unfriendly operation.
Theoretical analysis of sparsification compression in non-
IID scenarios: Most works ignore the node selection, infre-
quent communication, and the decaying learning rate, thus not
applicable for FL. The work [8] compares distributed quan-
tized SGD with unbiased quantizers and distributed SGD with
Error-Feedback and biased compressors in non-IID scenarios.
The work [28] proposes DAGC, which assigns compression
ratios according to the training weight. The work [24] proposes
EF21, which refines the traditional error-feedback mechanism.
The work [42] introduces a compression-based FL algorithm
equipped with EF and achieves the same convergence rate as
vanilla FedAVG in the non-convex cases, but lacks the analysis
in the convex cases and does not consider the absolute com-
pressor. Our theoretical analysis considers both the infrequent
communication and the partial node participation, making it
suitable for FL.

VIII. CONCLUSION

In this paper, we propose an ideal sparsifier for FL with a
time complexity of O(d), named γ-FedHT. We first reveal that
the hard-threshold compressor induces accuracy degradation
in FL and the decaying-γ in non-IID scenarios leads to the
failure of this compressor in FL. Then, we propose γ-FedHT,
a stepsize-aware low-cost hard-threshold compressor in FL,
with the time complexity of O(d) and the same convergence
rate as FedAVG. Experimental results show that γ-FedHT
can improve accuracy by up to 7.42% over Top-k under the
equal communication amount in non-IID scenarios. γ-FedHT
is expected to replace Top-k as the SOTA sparsifier in FL due
to its excellent performance.
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[24] P. Richtárik, I. Sokolov, and I. Fatkhullin, “Ef21: A new, simpler,
theoretically better, and practically faster error feedback,” Advances
in Neural Information Processing Systems, vol. 34, pp. 4384–4396,
2021.

[25] Y. Gao, R. Islamov, and S. U. Stich, “Econtrol: Fast distributed
optimization with compression and error control,” in The Twelfth
International Conference on Learning Representations, 2024.

[26] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: A novel im-
age dataset for benchmarking machine learning algorithms,” arXiv
preprint arXiv:1708.07747, 2017.

[27] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features
from tiny images,” 2009.

[28] R. Lu, J. Song, B. Chen, L. Cui, and Z. Wang, “Dagc: Data-aware
adaptive gradient compression,” in INFOCOM, 2023.

[29] Q. Li, Y. Diao, Q. Chen, and B. He, “Federated learning on non-iid
data silos: An experimental study,” in IEEE International Conference
on Data Engineering, 2022.

[30] S. Agarwal, H. Wang, K. Lee, S. Venkataraman, and D. Papailiopou-
los, “Adaptive gradient communication via critical learning regime
identification,” Machine Learning and Systems, vol. 3, pp. 55–80,
2021.

[31] A. Koloskova, S. U. Stich, and M. Jaggi, “Sharper convergence
guarantees for asynchronous sgd for distributed and federated learn-
ing,” Advances in Neural Information Processing Systems, vol. 35,
pp. 17 202–17 215, 2022.

[32] H. Yang, M. Fang, and J. Liu, “Achieving linear speedup with partial
worker participation in non-iid federated learning,” in International
Conference on Learning Representations, 2021.

[33] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Sparse binary
compression: Towards distributed deep learning with minimal com-
munication,” in International Joint Conference on Neural Networks,
IEEE, 2019, pp. 1–8.

[34] S. Merity, C. Xiong, J. Bradbury, and R. Socher, “Pointer sentinel
mixture models,” in International Conference on Learning Represen-
tations, 2022.

[35] Z. Jiang, Y. Xu, H. Xu, Z. Wang, and C. Qian, “Heterogeneity-aware
federated learning with adaptive client selection and gradient com-
pression,” in IEEE INFOCOM 2023-IEEE Conference on Computer
Communications, IEEE, 2023, pp. 1–10.

[36] X. Li and P. Li, “Analysis of error feedback in compressed federated
non-convex optimization,” 2022.

[37] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R.
Pedarsani, “Fedpaq: A communication-efficient federated learning
method with periodic averaging and quantization,” in International
Conference on Artificial Intelligence and Statistics, PMLR, 2020,
pp. 2021–2031.

[38] M. M. Amiri, D. Gunduz, S. R. Kulkarni, and H. V. Poor, “Federated
Learning With Quantized Global Model Updates,” arXiv e-prints,
arXiv:2006.10672, arXiv:2006.10672, Jun. 2020. arXiv: 2006.10672
[cs.IT].

[39] F. Haddadpour, M. M. Kamani, A. Mokhtari, and M. Mahdavi,
“Federated learning with compression: Unified analysis and sharp
guarantees,” in International Conference on Artificial Intelligence and
Statistics, PMLR, 2021, pp. 2350–2358.

[40] Y. Liu, S. Chang, and Y. Liu, “Cepe-fl: Communication-efficient
and privacy-enhanced federated learning via adaptive compressive
sensing,” IEEE Transactions on Big Data, 2024.

[41] D. Wu, W. Yang, H. Jin, X. Zou, W. Xia, and B. Fang, “Fedcomp: A
federated learning compression framework for resource-constrained
edge computing devices,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 43, no. 1, pp. 230–243,
2024. DOI: 10.1109/TCAD.2023.3307459.

[42] H. Yang, J. Liu, and E. S. Bentley, “Cfedavg: Achieving efficient
communication and fast convergence in non-iid federated learning,”
in 19th WiOpt, 2021. DOI: 10.23919/WiOpt52861.2021.9589061.


